• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (14): 20-28.doi: 10.3901/JME.2025.14.020

• 特邀专栏:铝合金薄壁构件超低温成形制造新原理 • 上一篇    

扫码分享

2060铝锂合金超低温变形行为与复杂薄壁件拉深成形工艺研究

董非1,2, 易幼平1,2, 黄始全1,2, 何海林1,2   

  1. 1. 中南大学轻合金研究院 长沙 410083;
    2. 中南大学极端服役性能精准制造全国重点实验室 长沙 410083
  • 收稿日期:2025-01-20 修回日期:2025-04-01 发布日期:2025-08-25
  • 作者简介:董非,男,1994年出生,副教授。主要研究方向为轻质合金薄壁件成形。E-mail:dongfei_csu@163.com;易幼平(通信作者),男,1966年出生,博士,教授,博士研究生导师。主要研究方向为轻质合金材料与构件高性能成形制造方法与应用。E-mail:yyp@csu.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFA0708802)和湖南省自然科学基金面上(2025JJ50211)资助项目。

Research on Cryogenic Deformation Behavior and Deep Drawing Process for Complex Thin-walled Parts of 2060 Aluminum-Lithium Alloy

DONG Fei1,2, YI Youping1,2, HUANG Shiquan1,2, HE Hailin1,2   

  1. 1. Research Institute of Light Alloy, Central South University, Changsha 410083;
    2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083
  • Received:2025-01-20 Revised:2025-04-01 Published:2025-08-25

摘要: 针对铝锂合金复杂形状薄壁构件成形易开裂与性能损失突出问题,研究铝锂合金薄壁件超低温成形方法。发现成形温度由25 ℃降低至-196 ℃,2060铝锂合金塑性提升幅度超55%,微观组织观察表明超低温成形抑制了位错动态回复,提高了材料加工硬化能力,实现均匀塑性变形。相较于退火态合金,固溶淬火态合金具有更优超低温塑性,该现象归因于固溶淬火使合金中第二相溶入铝基体,抑制第二相引发的局部变形,促进变形带组织形成,提升变形后期加工硬化能力。通过超低温拉深成形实现了2060合金飞机舱门盆形样件一次成形,最大成形深度98 mm,对固溶淬火态合金超低温成形的构件进行时效处理,可实现优异的强塑性与疲劳性能匹配,本研究为航空铝锂合金复杂薄壁件形性协同制造提供了新方法。

关键词: 铝锂合金, 超低温成形, 加工硬化能力, 拉深成形, 强塑性

Abstract: A cryogenic forming method for aluminum-lithium alloy thin-walled components is investigated to address the issues of cracking tendency and property degradation during complex-shaped thin-wall forming. When the forming temperature is reduced from 25°C to –196°C, the plasticity of 2060 aluminum-lithium alloy is enhanced by over 55%. Microstructural observations reveal that cryogenic forming suppresses dynamic recovery of dislocations and enhances work hardening capability, enabling homogeneous plastic deformation. Compared with annealed alloys, solution-quenched alloys demonstrate superior cryogenic plasticity, which is attributed to the dissolution of second-phase particles into aluminum matrix during solution treatment. This phase dissolution mechanism effectively inhibits localized deformation induced by second-phase particles, promotes deformation band formation, and enhances work hardening capability during later deformation stages. A 2060 alloy aircraft door basin-shaped sample with maximum forming depth of 98 mm is successfully formed through cryogenic deep drawing in a single forming step. Components fabricated from solution-quenched alloy through cryogenic forming exhibit excellent strength-ductility synergy and fatigue performance after aging treatment. The findings provide a new approach for integrated forming-property manufacturing of complex thin-walled aviation aluminum-lithium alloy components.

Key words: aluminum-lithium alloy, cryogenic forming, work hardening capability, deep drawing, strength-ductility

中图分类号: