机械工程学报 ›› 2025, Vol. 61 ›› Issue (14): 1-19.doi: 10.3901/JME.2025.14.001
• 特邀专栏:铝合金薄壁构件超低温成形制造新原理 • 上一篇
刘伟1, 程旺军2, 苑世剑1
收稿日期:
2025-02-18
修回日期:
2025-04-06
发布日期:
2025-08-25
作者简介:
刘伟(通信作者),男,1977年出生,教授,博士研究生导师。主要研究方向为铝合金超低温成形、薄壁构件液压成形等。E-mail:liuw@hit.edu.cn
基金资助:
LIU Wei1, CHENG Wangjun2, YUAN Shijian1
Received:
2025-02-18
Revised:
2025-04-06
Published:
2025-08-25
摘要: 新概念、长寿命、可重复使用航空航天器对传统高强铝合金薄壁构件的制造工艺和服役性能提出更高要求,如何实现该类复杂构件的高性能成形制造是当前亟待解决的难题。分析高强铝合金薄壁件整体成形技术存在的巨大挑战,在发现铝合金超低温“双增效应”的基础上,概述高强铝合金超低温成形技术的提出背景,综述分析近年来国内外学者在铝合金超低温变形双增效应与微观机制、超低温宏微观变形原位测试方法、超低温成形工艺与关键技术、超低温成形装备与典型应用等方面的研究进展,展望铝合金超低温成形技术未来的发展方向,为制造高性能航空航天器、电动汽车以及新能源储运装备等铝合金整体复杂曲面构件提供新途径。
中图分类号:
刘伟, 程旺军, 苑世剑. 高强铝合金薄壁构件超低温成形制造研究进展[J]. 机械工程学报, 2025, 61(14): 1-19.
LIU Wei, CHENG Wangjun, YUAN Shijian. Research Progress of Cryogenic Forming and Manufacturing of High-strength Aluminum Alloy Thin-walled Components[J]. Journal of Mechanical Engineering, 2025, 61(14): 1-19.
[1] 王祝堂. 航空航天器用铝合金手册[M]. 长沙:中南大学出版社,2015. WANG Zhutang. Manuals of aluminum alloys for aerospace vehicles[M]. Changsha:Central South University Press,2015. [2] GE X Q,YU J Q,SUN Y T,et al. Deformation behavior,constitutive modeling and microstructure evolution of 2195 Al-Li alloy deformed at high strain rates and cryogenic temperatures[J]. Materials & Design,2024,244:113100. [3] 潘复生,张丁非. 铝合金及应用[M]. 北京:化学工业出版社,2006. PAN Fusheng,ZHANG Dingfei. Aluminum alloys and applications[M]. Beijing:Chemical Industry Press,2006. [4] 苑世剑. 现代液压成形技术[M]. 北京:国防工业出版社,2016. YUAN Shijian. Modern hydraulic forming technology[M]. Beijing:National Defense Industry Press,2016. [5] 张洪瑞,詹梅,郑泽邦,等. 航天大型薄壁回转曲面构件成形制造技术的发展与挑战[J]. 机械工程学报,2022,58(20):166-185. ZHANG Hongrui,ZHAN Mei,ZHENG Zebang,et al. Development and challenge of forming manufacturing technologies for aerospace large-scale thin-wall axisymmetric curved-surface components[J]. Journal of Mechanical Engineering,2022,58(20):166-185. [6] WANG G Q,ZHAO Y H,HAO Y F. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing[J]. Journal of Materials Science & Technology,2018,34(1):73-91. [7] YUAN S J. Fundamentals and processes of fluid pressure forming technology for complex thin-walled components[J]. Engineering,2021,7:358-366. [8] 程旺军. 2219铝合金薄板超低温变形行为与成形性能[D]. 哈尔滨:哈尔滨工业大学,2021. CHENG Wangjun. Deformation behavior and formability of 2219 aluminum alloy sheets at cryogenic temperature[D]. Harbin:Harbin Institute of Technology,2021. [9] WANG K H,JIAO Y,WU X J,et al. A novel composited process of solution treatment-hot gas forming and stress relaxation aging for titanium alloys[J]. Journal of Material Processing Technology,2021,288:116904. [10] 郎利辉,孙志莹,孔德帅,等. 复杂薄壁航空整体钣金件的液压成形技术[J]. 锻压技术,2014,39(10):25-31. LANG Lihui,SUN Zhiying,KONG Deshuai,et al. Hydroforming technology on whole complex thin-walled sheet in aviation industry[J]. Forging & Stamping Technology,2014,39(10):25-42. [11] ZHENG K L,POLITIS D J,WANG L L,et al. A review on forming techniques for manufacturing lightweight complex shaped aluminium panel components[J]. International Journal of Lightweight Materials and Manufacture,2018,1:55-80. [12] HE Z B,LIANG J K,RUAN X G,et al. Tailoring the microstructure and mechanical properties of laser metal deposited Hastelloy X superalloy via heat treatment and subsequent hot plastic deformation[J]. Journal of Material Processing Technology,2025,336:118678. [13] CHENG W J,LIU W,YUAN S J. Deformation behavior of Al-Cu-Mn alloy sheets under biaxial stress at cryogenic temperatures[J]. Materials Science and Engineering A,2019,759:357-367. [14] YUAN S J,CHENG W J,LIU W,et al. A novel deep drawing process for aluminum alloy sheets at cryogenic temperatures[J]. Journal of Material Processing Technology,2020,284:116743. [15] FAN X B,YUAN S J. Innovation for forming aluminum alloy thin shells at ultra-low temperature by the dual enhancement effect[J]. International Journal of Extreme Manufacturing,2022,4(3):033001. [16] 董非. 铝锂合金薄板超低温变形行为与拉深成形工艺研究[D]. 长沙:中南大学,2022. DONG Fei. Research on cryogenic deformation behaviors and deep drawing technique of Al-Li alloy sheet[D]. Changsha:Central South University,2022. [17] YANG Q Y,ZHOU Y L,TAN Y B,et al. Effects of microstructure,texture evolution and strengthening mechanisms on mechanical properties of 3003 aluminum alloy during cryogenic rolling[J]. Journal of Alloys and Compounds,2021,884:161135. [18] XI R,XIE J,YAN J B. Evaluations of low-temperature mechanical properties and full-range constitutive models of AA 5083-H112/6061-T6[J]. Construction and Building Materials,2024,411:134520. [19] YAN J B,KONG G B,ZHANG L X. Low-temperature tensile behaviors of 6061-T6 aluminium alloy:Tests,analysis,and numerical simulation[C]//Structures,2023,56:105054. [20] FENG B,GU B,LI S H. Cryogenic deformation behavior and failure mechanism of AA7075 alloy sheets tempered at different conditions[J]. Materials Science and Engineering:A,2022,848:143396. [21] JAWAHIR I S,ATTIA H,BIERMANN D. Cryogenic manufacturing processes[J]. CIRP Annals Manufacturing Technology,2016,65:713-736. [22] WANG R Q,LIU W,YAO M J. Cooperative effect of grain size and cryogenic temperature on deformation behavior and mechanism of commercial pure Al sheets[J]. Materials Science and Engineering:A,2024,899:146411. [23] WANG R Q,LIU W,YAO M J. Mechanism of considerable strain hardening in ultrafine-grained pure aluminum sheets at cryogenic temperatures[J]. Materials Science and Engineering:A,2023,862:144481. [24] KUMAR M,SOTIROV N,GRABNER F,et al. Cryogenic forming behaviour of AW-6016-T4 sheet[J]. Transactions of Nonferrous Metals Society of China,2017,27(6):1257-1263. [25] LIU W,WANG R Q,ZHOU H B,et al,Modeling of cryo-deformation based on grain size-dependent dislocation evolution[J]. International Journal of Mechanical Sciences,2025,285:109813. [26] LIU W,HAO Y G. Damage and fracture prediction of 7075 high-strength aluminum alloy during cryogenic stamping process[J]. Mechanics of Materials,2021,163:104080. [27] 刘伟,程旺军,郝永刚,等. 铝合金超低温双增效应与成形性能[J]. 中国有色金属学报,2022,32(7):1845-1854. LIU Wei,CHENG Wangjun,HAO Yonggang,et al. Dual enhancement effect and formability of aluminum alloys at cryogenic temperatures[J]. The Chinese Journal of Nonferrous Metals,2022,32(7):1845-1854. [28] JOBBA M,MISHRA R K,NIEWCZAS M. Flow stress and work-hardening behaviour of Al-Mg binary alloys[J]. International Journal of Plasticity,2015,65:43-60. [29] YU H P,FENG L Y,JIANG XI,et al. Mechanical properties and microscopic mechanisms of 2219-T6 aluminum alloy under dynamic tension with cryogenic temperatures[J]. Materials Science and Engineering:A,2024,891:145920. [30] JIA Z H,ZHOU G W,ZHOU H Y,et al. Effects of Cu content and heat treatment process on microstructures and mechanical properties of Al-Si-Mg-Mn-xCu cast aluminum alloys[J]. Transactions of Nonferrous Metals Society of China,2024,34:737-754. [31] 谭文福. 高强耐损伤型Al-Cu-Li合金可成形性与组织性能研究[D]. 长沙:中南大学,2022. TAN Wenfu. Study on formability and microstructure properties of al-cu-li alloy with high strength and damage resistance[D]. Changsha:Central South University,2022. [32] PARK D,CHOI S,LIM J,et al. Cryogenic mechanical behavior of 5000 and 6000 series aluminum alloys:Issues on application to offshore plants[J]. Cryogenics,2015,68:44-58. [33] LEE W,LIN C. Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures[J]. Cryogenics,2016,79:26-34. [34] IMMANUEL R J,PANIGRAHI S K. Deformation behavior of ultrafine grained A356 material processed by cryorolling and development of Johnson-Cook model[J]. Materials Science and Engineering:A,2018,712:747-756. [35] LIU W,CHENG W J,YUAN S J. Analyses on formability and flow stress of an Al-Cu-Mn alloy sheet under biaxial stress at cryogenic temperatures[J]. International Journal of Mechanical Sciences,2021,195:106266. [36] LIU W,HAO Y G,SUN W. Prediction for cryogenic formability of AA2219 alloy cylindrical components with friction stir weld[J]. International Journal of Material Forming,2023,16(4):1-16. [37] YUAN S J,CHENG W J,LIU W. Cryogenic formability of a solution-treated aluminum alloy sheet at low temperatures[J]. Journal of Material Processing Technology,2021,298:117295. [38] WANG X G,FAN X B,CHEN X S,et al. Forming limit of 6061 aluminum alloy tube at cryogenic temperatures[J]. Journal of Material Processing Technology,2022,306:117649. [39] 王旭刚. 6061铝合金薄壁管超低温双向应力变形行为与成形极限[D]. 哈尔滨:哈尔滨工业大学,2023. WANG Xugang. Cryogenic deformation behaviors and forming limit of 6061 aluminum alloy thin-walled tubes under biaxial stres[D]. Harbin:Harbin Institute of Technology,2023. [40] WANG C G,YI Y P,WANG H H,et al. Investigation on the formability and deformation mechanism of aluminum alloy thin-walled components at cryogenic temperature[J]. Journal of Material Processing Technology,2023,319:118041. [41] 彭友红. 铝合金低温强塑性协同提升的变形机制研究[D]. 哈尔滨:哈尔滨工业大学,2024. PENG Youhong. Investigations on the deformation mechanisms of strength-ductility synergetic enhancement in aluminum alloys at cryogenic temperature[D]. Harbin:Harbin Institute of Technology,2024. [42] PENG Y H,LI D Y,WU H,et al. Insights into the deformation mechanisms of an Al1Mg0.4Si alloy at cryogenic temperature:An integration of experiments and crystal plasticity modeling[J]. Journal of Materials Science & Technology,2024,200:69-82. [43] FAN X B,CHEN X S,YUAN S J. Novel forming process for aluminum alloy thin shells at ultra-low temperature gradient[J]. International Journal of Machine Tools & Manufacture,2023,185:103992. [44] FU Y F,CHEN C Y,LIU X F,et al. Research on the ultra-low temperature tensile deformation mechanism of Al-Mg-Si alloys in different heat treatment states[J]. Journal of Alloys and Compounds,2025,1010:177150. [45] CHENG W J,LIU W,FAN X B,et al. Cooperative enhancements in ductility and strain hardening of a solution-treated Al-Cu-Mn alloy at cryogenic temperatures[J]. Materials Science and Engineering:A,2020,790:139707. [46] SUN H,LI H,YANG H,et al. Breaking through the bending limit of Al-alloy tubes by cryogenic effect controlled mechanical properties and friction behaviours[J]. International Journal of Machine Tools & Manufacture,2024,195:104111. [47] FAN X B,KANG X,ZHNAG Z C,et al. Influence of cryogenic deformation and post-deform aging on microstructure and mechanical properties of Al-Cu alloy[J]. Journal of Alloys and Compounds,2024,1005:175894. [48] 张劲,祝春楠,易幼平,等. Al-Cu-Li合金超低温变形行为和微观机制[J]. 中南大学学报(自然科学版),2022,53(7):2457-2466. ZHANG Jin,ZHU Chunnan,YI Youping,et al. Deformation behavior and micro mechanism of Al-Cu-Li alloy at cryogenic temperature[J]. Journal of Central South University (Science and Technology),2022,53(7):2457-2466. [49] GRUBER B,WEIßENSTEINER I,KREMMER T,et al. Mechanism of low temperature deformation in aluminium alloys[J]. Materials Science and Engineering:A,2020,795:139935. [50] WANG C,ZHANG J,ZHU C N,et al. Multi slip activation enabled excellent low-temperature strength- ductility synergy in Al-Cu-Li alloy[J]. Vacuum,2022,204:111328. [51] SONG L L,GAO H T,BHATT L,et al. Microstructure and mechanical properties of AA1050/AA6061 multilayer composites via accumulative roll bonding and cryorolling and subsequent aging[J]. Materials Science and Engineering:A,2023,874:145069. [52] SCHNEIDER R,HEINE B,GRANT R J,et al. Mechanical behaviour of aircraft relevant aluminium wrought alloys at low temperatures[J]. Journal of Materials:Design and Applications,2013,229(2):1-11. [53] LIU W,HAO Y G,WANG R Q. Global damage behavior and formability prediction of AA2219 FSW blanks at cryogenic temperature[J]. International Journal of Mechanical Sciences,2023,249:108193. [54] FAN X B,LIU Y,WU F X,et al. Gradient ultra-low temperature deep drawing law of 2219 aluminum alloy spherical shell with differential thickness[J]. Forging Stamping Technology,2023,48(5):155-161. [55] DONG F,HUANG S Q,YI Y P,et al. Flow behaviors and deformation mechanism of WQ-tempered Al-Li alloy at cryogenic temperatures[J]. Materials Science and Engineering:A,2021,809:140971. [56] XU Z B,ROVEN H,JIA Z H. Mechanical properties and surface characteristics of an AA6060 alloy strained in tension at cryogenic and room temperature[J]. Materials Science and Engineering:A,2015,648:350-358. [57] NAYAN N,MURTY N,JHA A,et al. Mechanical properties of aluminium-copper-lithium alloy AA2195 at cryogenic temperatures[J]. Materials & Design,2014,58:445-450. [58] MA Y H,LIU C L,MIAO K S. Effects of cooling rate and cryogenic temperature on the mechanical properties and deformation characteristics of an Al-Mg-Si-Fe-Cr alloy[J]. Journal of Alloys and Compounds,2023,947:169559. [59] XU B S,LU Q C,LIU C L,et al. Anisotropic behavior and temperature-dependent mechanical properties of AA1060 aluminum alloy:A comprehensive microstructural study[J]. Materials Science and Engineering:A,2024,901:146550. [60] HUAN X Y,LIU C L,MIAO K S,et al. In-situ EBSD study on the microstructure evolution of an Al-Mg-Si-Fe alloy with different precipitation free zones during tension at cryogenic and ambient temperatures[J]. Materials Science and Engineering:A,2023,873:145029. [61] GU B,FENG B,QI Y T,et al. A comparative study on cryogenic formability and paint baking property of AA7075 alloy sheets tempered at fast retrogressed and pre-aged conditions[J]. Journal of Materials Research and Technology,2024,30:5232-5248. [62] DONG F,HUANG S Q,YI Y P,et al. Comparative study on the formability and microstructure evolution of different tempered AleCueLi alloy sheets during room and cryogenic temperature forming process[J]. Journal of Materials Research and Technology,2023,25:3137-3150. [63] GAO Y R,LI H X,ZHAO D Y,et al. Cryogenic friction behavior of aluminum alloys sheets under dry contact condition[J]. Tribology International,2023,180:108-227. [64] 郝永刚. 2219铝合金搅拌摩擦焊薄板超低温成形研究[D]. 哈尔滨:哈尔滨工业大学,2023. HAO Yonggang. Research on cryogenic forming of 2219 aluminum alloy friction stir welded blanks[D]. Harbin:Harbin Institute of Technology,2023. [65] 洪吉庆. 7075铝合金双层板超低温拉深成形规律[D]. 大连:大连理工大学,2022. HONG Jiqing. Research on deep drawing forming law of 7075 aluminum alloy double-layer sheets at cryogenic temperature[D]. Dalian:Dalian University of Technology,2022. [66] 谢艺菁. 6061铝合金超低温变形组织演变规律研究[D]. 长沙:中南大学,2023. XIE Yijing. Study on microstructure evolution of 606l aluminumalloy under cryogenic temperature deformation[D]. Changsha:Central South University,2023. [67] DONG F,HUANG S Q,YI Y P,et al. Effect of increased stretching deformation at cryogenic temperature on the precipitation behavior and mechanical properties of 2060 Al-Li alloy[J]. Materials Science and Engineering:A,2022,834:142585. [68] DONG F,YI Y P,HUANG S Q,et al. Cryogenic formability and deformation behavior of 2060 Al-Li alloys with water-quenched and T4 aged temper[J]. Materials Science and Engineering:A,2021,823:141722. [69] LIU W,HAO Y G,SUN W,et al. Prediction for cryogenic formability of AA2219 alloy cylindrical components with friction stir weld[J]. International Journal of Material Forming,2023,16(4):1-16. [70] HAO Y G,LIU W. Analysis on exceptional cryogenic mechanical properties of AA2219 alloy FSW joints in multi-scale[J]. Materials Science and Engineering:A,2022,850:143489. [71] HAO Y G,LIU W. Workability improvement on Al alloy inhomogeneous blanks by cryogenic forming[J]. Materials and Manufacturing Processes,2023,38(4):416-426. [72] WANG X G,FAN X B,CHEN X S,et al. Cryogenic deformation behavior of 6061 aluminum alloy tube under biaxial tension condition[J]. Journal of Material Processing Technology,2022,303:117523. [73] FAN X B,CHEN X S,YUAN S J. Cryogenic forming process and equipment for aluminum alloy thin shells[C]// TP 2023,LNME,2024,323-331. [74] WEN S Y,CHENG W J,ZHAO Y,et al. Differentiated fracture behaviors of a spray-formed Al-Cu-Li alloy under various heat treatments at liquid nitrogen temperature[J]. Cryogenics,2025,147:104049. [75] FAN X B,KONG F Y,HONG J Q,et al. Study on cryogenic deep drawing of 2219 aluminum alloy spherical shell[C]//Journal of Physics:Conference Series,2022,2338:012008. [76] FAN X B,QIAO K,CHEN X S,et al. Wrinkling control and microstructure of 7075 aluminum alloy hemispherical shell in gradient ultra-low temperature forming[J]. The International Journal of Advanced Manufacturing Technology,2023,129:2227-2239. [77] 戚宇彤,李淑慧,钱昌明,等. 铝合金W型防撞梁超低温冲压仿真与试验研究[J]. 塑性工程学报,2024,31(11):82-89. QI Yutong,LI Shuhui,QIAN Changming,et al. Simulation and experiment study on cryogenic stamping for W-shaped aluminum alloy anti-collision beam[J]. Journal of Plasticity Engineering,2024,31(11):82-89. [78] 高胜磊. 2024铝合金飞机舱门类薄壁件超低温拉深成形工艺研究[D]. 长沙:中南大学,2022. GAO Shenglei. Research on cryogenic temperature deep forming process of 2024 aluminum alloy thin wall components for aircraft doors[D]. Changsha:Central South University,2022. [79] FAN X B,WANG Q L,WU F X,et al,Cryogenic springback of 2219-W aluminum alloy sheet through V-shaped bending[J]. Transactions of Nonferrous Metals Society of China,2024,34(10):3185-3193. [80] FENG H,ZHAO X H,SU Y L,et al. Cryo-compressed test system for hydrogen equipment developing[J]. Journal of Mechanical Engineering,2023,59(16):390-396. [81] ZHANG M,LV H,KANG H R,et al. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks[J]. International Journal of Hydrogen Energy,2019,44(47):25777-25799. [82] HE C M,YU R,SUN H R,et al. Lightweight multilayer composite structure for hydrogen storage tank[J]. International Journal of Hydrogen Energy,2016,41(35):15812-15816. [83] GLUDOVATZ B,HOHENWARTER A,CATOOR D,et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science,2014,345:1153-1158. [84] OKONKWO P C,BELGACEM I B,MANSIR I B,et al. A focused review of the hydrogen storage tank embrittlement mechanism process[J]. International Journal of Hydrogen Energy,2023,48(35):12935-12948. [85] 王永青,韩灵生,刘阔,等. 超低温加工机床的液氮冷却介质可靠传输与精准调控[J]. 机械工程学报,2020,56(1):187-195. WANG Yongqing,HAN Lingsheng,LIU Kuo,et al. Reliable transmission and precise regulation of liquid nitrogen as the coolant of cryogenic machine tool[J]. Journal of Mechanical Engineering,2020,56(1): 187-195. [86] 齐守良,张鹏,王如竹,等. 微通道中液氮的流动沸腾—两相流动压降分析[J]. 机械工程学报,2007,43(5):36-43. QI Shouliang,ZHANG Peng,WANG Ruzhu,et al. Flow boiling of liquid nitrogen in micro-tubes:Two-phase flow pressure drop[J]. Journal of Mechanical Engineering,2007,43(5):36-43. [87] 袁凯,丛茜,王永青,等. 基于AMESim的液氮可控传输性能分析[J]. 低温工程,2017,217(5):49-53. YUAN Kai,CONG Qian,WANG Yongqing,et al. Analysis on controllable transmission performance of liquid nitrogen based on AMESim[J]. Cryogenics,2017,217(5):49-53. [88] 凡晓波,王旭刚,陈险烁,等. 铝合金管材超低温介质压力胀形行为[J]. 锻压技术,2021,46(4):1-6. FAN Xiaobo,WANG Xugang,CHEN Xianshuo,et al. Behavior of ultra-low temperature medium bulging for aluminum alloy tube[J]. Forging & Stamping Technology,2021,46(4):1-6. [89] REICHL C,SCHNEIDER R,HOHENAUER W,et al. A numerical simulation of thermodynamic processes for cryogenic metal forming of aluminum sheets and comparison with experimental results[J]. Applied Thermal Engineering,2017,113:1228-1241. [90] GRABNER F,GRUBER B,SCHLÖGL,et al. Cryogenic sheet metal forming-An overview[C]// Materials Science Forum,2018,941:1397-1403. [91] FAN X B,WU F X,YANG G,et al. Wrinkling suppression in cryogenic forming of high-strength Al-alloy ultra-thin shells by controlling interface shear stress[J]. International Journal of Machine Tools & Manufacture,2024,201:104193. [92] HENDRICKX G. Parameter study of incremental forming in cryogenic environment[D]. Belgium:KU Leuven,2015. [93] GRABNER F,ÖSTERREICHER J A,GRUBER B,et al. Cryogenic forming of Al-Mg alloy sheet for car outer body applications[J]. Advanced Engineering Materials,2019,21:1900089. [94] DONG N N,SUN L X,MA H B,et al. Effects of cryogenic treatment on microstructures and mechanical properties of Mg-2Nd-4Zn alloy[J]. Materials Letters,2021,305:130699. [95] WENG Z J,XU X F,YANG B,et al. Cryogenic thermal conductivity of 7050 aluminum alloy subjected to different heat treatments[J]. Cryogenics ,2021,116:103305. [96] BANSALA A,SINGLAA A KUMAR D V,et al. Influence of cryogenic treatment on mechanical performance of friction stir Al-Zn-Cu alloy weldments[J]. Journal of Manufacturing Processes,2020,56:43-53. [97] KHANNA N,AGRAWAL C,PIMENOV D,et al. Review on design and development of cryogenic machining setups for heat resistant alloys and composites[J]. Journal of Manufacturing Processes,2021,68:398-422. [98] FENG B,GU B,LI S H. An efficient pre-hardened cryogenic forming process for AA7075 aluminum alloy sheets[J]. Journal of Manufacturing Processes,2023,92:534-547. [99] FAN X B,WANG X G,CHEN X S,et al. Aluminum alloy W-temper cryogenic forming with enhanced formability and strength[J]. International Journal of Mechanical Sciences,2024,262:108736. [100] 凡晓波,刘洋,邬方兴,等. 2219铝合金差厚球壳梯度超低温拉深成形规律[J]. 锻压技术,2023,48(5):155-161. FAN Xiaobo,LIU Yang,WU Fangxing,et al. Gradient ultra-low temperature deep drawing law of 2219 aluminum alloy spherical shell with differential thickness[J]. Forging & Stamping Technology,2023,48(5):155-161. [101] 凡晓波,洪吉庆,赖小明,等. 铝锂合金曲面件超低温成形工艺[J]. 宇航材料工艺,2021,51(4):126-130. FAN Xiaobo,HONG Jiqing,LAI Xiaoming,et al. Process of cryo-forming for Al-Li alloy curved-shaped components[J]. Aerospace Materials & Technology,2021,51(4):126-130. [102] 刘磊. 5A06铝合金方盒形件超低温拉深成形规律研究[D]. 哈尔滨:哈尔滨工业大学,2021. LIU Lei. Research on cryogenic deep drawing law of 5A06 aluminum alloy square box[D]. Harbin:Harbin Institute of Technology,2021. [103] WU F X,FAN X B,YANG G,et al. Dimensional change and springback of spherical shell in cryogenic forming[J]. International Journal of Mechanical Sciences,2024,284:109757. [104] 金晓月. 2195铝锂合金搅拌摩擦焊板材超低温协调变形行为[D]. 哈尔滨:哈尔滨工业大学,2020. JIN Xiaoyue. Deformation behavior of 2195 Al-Li alloy friction stir welding sheet at cryogenic temperatures[D]. Harbin:Harbin Institute of Technology,2020. [105] YANG G,FAN X B,ZHANG Z H,et al. Enhancing ductility and post-aging strength of tailor welded blanks through pre-aging friction stir welding[J]. Materials & Design,2024,244:113215. [106] 吴会星,王丹,孟令舰,等. 2A12铝合金锥形曲面件超低温成形工艺研究[J]. 航天制造技术,2024,8(4):58-61. WU Huixing,WANG Dan,MENG Lingjian,et al. Investigation of cryogenic forming for 2A12 aluminumalloy conical part[J]. Aerospace Manufacturing Technology,2024,8(4):58-61. |
[1] | 贺世伟, 朱丽娜, 张志强, 康嘉杰. 激光电弧复合增材制造铝合金的组织和性能研究[J]. 机械工程学报, 2025, 61(10): 152-163. |
[2] | 张会杰, 孔旭亮, 姚恩泽, 马康, 宋建岭. 母材相对位置对航天异种高强铝合金FSW接头组织性能的影响机理[J]. 机械工程学报, 2024, 60(18): 154-162. |
[3] | 林忠钦, 马运五, 夏裕俊, 李永丰, 李淑慧, 李永兵. 载运工具高性能薄壁承载结构成形及连接工艺研究进展[J]. 机械工程学报, 2023, 59(20): 1-17. |
[4] | 宋燕利, 郝川川, 宁世儒, 吴文林, 刘鹏. 极低频电脉冲处理对Al-Zn-Mg-Cu铝合金力学性能的影响规律与机理[J]. 机械工程学报, 2022, 58(10): 68-77. |
[5] | 杨超, 王英君, 徐艳利, 蔡静, 于宝海, 倪丁瑞. 含Sc高强铝合金薄板TIG焊与FSW接头组织与性能对比研究[J]. 机械工程学报, 2020, 56(6): 221-228. |
[6] | 杨超, 王继杰, 韩培培, 杜宝瑞,刘晓寒, 薛鹏, 马宗3, 倪丁瑞. 包铝层对7B04-O铝合金薄板搅拌摩擦搭接性能影响[J]. 机械工程学报, 2015, 51(22): 54-59. |
[7] | 王亚荣;黄文荣;雷华东. 焊后热处理对2A14高强铝合金电子束焊接头组织及力学性能的影响[J]. , 2011, 47(20): 141-145. |
[8] | 许良红;田志凌;彭云. 微观组织对高强铝合金接头冲击韧度的影响[J]. , 2009, 45(7): 108-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||