[1] 张新明,邓运来.新型合金材料-铝合金[M].北京:中国铁道出版社, 2018. ZHANG Xinming, DENG Yunlai. New alloy material-aluminum alloy[M]. Beijing:China Railway Publishing House, 2018. [2] 徐正. 7005/7075中高强度铝合金的应用研究[D].南京:南京理工大学, 2007. XU Zheng. Application research of 7005/7075 medium and high strength aluminum alloy[D]. Nanjing:Nanjing University of Science and Technology, 2007. [3] OKAZAKI K, KAGAWA M, CONRAD H. An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titatnium[J]. Materials Science and Engineering, 1980, 45(2):109-116. [4] TROITSKII O A, LIKHTMAN V I. The anisotropy of the action of electron and γ radiation on the deformation of zine single crystal in the brittle state[J]. Soviet Physics Doklady, 1963, 8(148):332-334. [5] TROITSKII O A. The electroplastic effect in metals[J]. Strength of Materials, 1984, 16(2):277-281. [6] ROH J H, SEO J J, HONG S T, et al. The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current[J]. International Journal of Plasticity, 2014, 58:84-99. [7] TROITSKII O A, SPITSYN V I, SOKOLOV N V, et al. Electroplastic drawing of stainless steel[J]. Doklady Akademii Nauk SSSR USSR., 1977, 237(5):1082-1085. [8] STASHENKO V I, TROITSKII O A, SPITSYN V I. Action of current pulses on zinc single crystals during creep[J]. Physica Status Solidi, 1983, 79(2):549-557. [9] STEPANOV G V, BABUTSKII A I. Effect of electric current on stress relaxation in metal[J]. Strength of Materials, 1996, 28(2):125-128. [10] HARIHARAN K, KIM M J, HONG S T, et al. Electroplastic behaviour in an aluminium alloy and dislocation density based modelling[J]. Materials and Design, 2017, 124:131-142. [11] KRAVCHEN V Y. Effect of directed electron beam on moving dislocations[J]. Soviet Physics. JETP, 1967, 24(6):1135. [12] 邓德伟,于涛,张林,等.脉冲电流-激光复合愈合钛合金深层裂纹微观组织研究[J].机械工程学报, 2017, 53(20):38-44. DENG Dewei, YU Tao, ZHANG Lin, et al. Effect of healing on microstructure by the combined treatment of pulse current and laser applied to deep crack in titanium alloy[J]. Journal of Mechanical Engineering, 2017, 53(20):38-44. [13] 高殿奎,李慧,付宇明,等.脉冲放电截至热疲劳裂纹的亚临界扩展[J].机械工程学报, 2001, 37(11):28-31. GAO Diankui, LI Hui, FU Yuming, et al. Pulse discharge ends the subcritical growth of thermal fatigue cracks[J]. Journal of Mechanical Engineering, 2001, 37(11):28-31. [14] TROITSKII O A, STASHENKO V I. Stress relaxation investigation of the electroplastic deformation of a metal[J]. Phys. Met. Metal, 1980, 47(1):180-185. [15] CONRAD H, GUO Z, SPRECHER A F. Effects of electropulse duration and frequency on grain growth in Cu[J]. Scripta Metallurgica et Materialia, 1990, 24(2):359-362. [16] CONRAD H, CAO W D, LU X P, et al. Effect of an electric field on the superplasticity of 7475 Al[J]. Scripta Metallurgica, 1989, 23(5):697-702. [17] CONRAD H, SPRECHER A F, CAO W D, et al. Electroplasticity-the effect of electricity on the mechanical properties of metals[J]. Journal of the Minerals, Metals and Materials Society, 1990, 42(9):28-33. [18] BUMGARDNER C H, CROOM B P, SONG Ningning, et al. Low energy electroplasticity in aluminum alloys[J]. Materials Science and Engineering A, 2020, 798(4):140235. [19] MOLOTSKII M, FLEUROV V. Magnetic effect in electroplasticity of metals[J]. Physical Review B, 1995, 52(22):15829-15834. [20] 王宏明,朱弋,李桂荣,等.强磁与应力场耦合作用下AZ31镁合金塑性变形行为[J].物理学报, 2016, 65(14):195-205. WANG Hongming, ZHU Yi, LI Guirong, et al. Plasticity and microstructure of AZ31 magnesium alloy under coupling action of high pulsed magnetic field and external stress[J]. Acta Physica Sinica, 2016, 65(14):195-205. [21] SALANDRO W A. Termo-mechanical modeling of the electrically assisted manufacturing (EAM) technique during open die forging[D]. Clemson:Clemson University, 2012. [22] LU Jue, SONG Yanli, HUA Lin, et al. Effect of temperature on friction and galling behavior of 7075 aluminum alloy sheet based on ball-on-plate sliding test[J]. Tribology International, 2019, 140:105872. [23] ROH J H, SEO J J, HONG S T, et al. The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current[J]. International Journal of Plasticity, 2014, 58:84-99. [24] HARIHARAN K, LEE M G, KIM M J, et al. Decoupling thermal and electrical effect in an electrically assisted uniaxial tensile test using finite element analysis[J]. Metallurgical and Materials Transactions A, 2015, 46(7):3043-3051. [25] ZHOU Pu, SONG Yanli, HUA Lin, et al. Using novel strain aging kinetics models to determine the effect of solution temperature on critical strain of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2020, 838:155647. [26] WU Wenlin, SONG Yanli, NING Shiru, et al. Microstructure evolution and mechanical properties improvement of Al-Zn-Mg-Cu alloys induced by a novel double electroshocking treatment[J]. Advanced Engineering Materials, 2020, 22(7):2000106. [27] 钟群鹏,赵子华.断口学[M].北京:高等教育出版社, 2006. ZHONG Qunpeng, ZHAO Zihua. Fractography[M]. Beijing:Higher Education Press, 2006. [28] 李红英.金属拉伸试样的断口分析[J].山西大同大学学报, 2011, 27(1):76-79. LI Hongying. Fracture analysis of the metal tensile specimen[J]. Journal of Shanxi Datong University, 2011, 27(1):76-79. [29] LIU Yuchen, LIN S K. A critical review on the electromigration effect, the electroplastic effect, and perspectives on the effects of electric current upon alloy phase stability[J]. JOM:the Journal of the Minerals, 2019, 71(9):3094-3106. [30] 武伟超.电脉冲对2024铝合金力学性能及微观组织影响研究[D].西安:西北工业大学, 2015. WU Weichao. Effect of electrical pulse processing on the microstructures and material properties of 2024 aluminum alloy[D]. Xi'an:Northwestern Polytechnical University, 2015. |