机械工程学报 ›› 2025, Vol. 61 ›› Issue (13): 192-212.doi: 10.3901/JME.2025.13.192
• 摩擦学 • 上一篇
罗子超1, 刘秀波1, 程巍1, 李新功1, 夏杰2, 郑军3
收稿日期:
2024-07-12
修回日期:
2025-01-18
发布日期:
2025-08-09
作者简介:
罗子超,男,1998出生。主要研究方向为材料表面工程与摩擦学。E-mail:451157630@qq.com;刘秀波(通信作者),男,1968出生,博士,教授,博士研究生导师。主要研究方向为材料表面工程与摩擦学。E-mail:liuxiubosz@163.com
基金资助:
LUO Zichao1, LIU Xiubo1, CHENG Wei1, LI Xingong1, XIA Jie2, ZHENG Jun3
Received:
2024-07-12
Revised:
2025-01-18
Published:
2025-08-09
摘要: 结构陶瓷材料具有高硬度、耐磨损、耐腐蚀、耐高温及化学性质稳定等突出优点,被广泛应用于摩擦学领域。随着服役工况的日益复杂,在高温、重载、强辐射等环境下,结构陶瓷摩擦元件的应用仍然面临着巨大的挑战。因此,工业界对陶瓷的摩擦性能提出了更高的要求,降低陶瓷材料的摩擦磨损成为材料科学与摩擦学领域重要课题之一。由于陶瓷材料磨损形式和机理复杂,目前未见通用的摩擦学模型可以解释所有陶瓷的摩擦磨损。本文以碳化硅陶瓷材料为例,对碳化硅的摩擦与润滑研究进展进行了综述,涵盖碳化硅陶瓷的磨损机制,水润滑技术,固体润滑复合材料,表面工程技术及制备工艺等方面,旨在促进SiC陶瓷材料在摩擦学领域的应用与发展,同时为其他结构陶瓷材料的润滑技术提供参考。
中图分类号:
罗子超, 刘秀波, 程巍, 李新功, 夏杰, 郑军. 碳化硅陶瓷材料的摩擦与润滑研究进展[J]. 机械工程学报, 2025, 61(13): 192-212.
LUO Zichao, LIU Xiubo, CHENG Wei, LI Xingong, XIA Jie, ZHENG Jun. Review of Tribology and Lubrication for Silicon Carbide Ceramic[J]. Journal of Mechanical Engineering, 2025, 61(13): 192-212.
[1] 董博,余超,邓承继,等. 碳化硅陶瓷导热性能的研究进展[J]. 材料工程,2023,51(1):64-75. DONG Bo,YU Chao,DENG Chengji,et al. Research progress on thermal conductivity of silicon carbide ceramics[J]. Journal of Materials Engineering,2023,51(1):64-75. [2] 李辰冉,谢志鹏,赵林. 碳化硅陶瓷材料烧结技术的研究与应用进展[J]. 陶瓷学报,2020,41(2):137-149 LI Chenran,XIE Zhipeng,ZHAO Lin. Research and application progress of sintering technology of silicon carbide ceramic materials[J]. Journal of Ceramics,2020,41(2):137-149. [3] 吴彼,张振波,李曙. 航空发动机材料摩擦学研究进展[J]. 摩擦学学报,2023,43(10):1099-1117. WU Bi,ZHANG Zhenbo,LI Shu. Research progress in tribology of aero-engine materials[J]. Tribology,2019,43(10):1099-1117. [4] 董从林,白秀琴,严新平,等. 海洋环境下的材料摩擦学研究进展与展望[J]. 摩擦学学报,2013,33(3):311-320. DONG Conglin,BAI Xiuqin,YAN Xinping,et al. Research progress and prospect of materials tribology in marine environment[J]. Tribology,2013,33(3):311-320. [5] 谭新峰,雒建斌. 润滑研究进展[J]. 中国机械工程,2020,31(2):145-174,189. TAN Xinfeng,LUO Jianbin. Research progress of lubrication[J]. China Mechanical Engineering,2019,31(2):145-174,189. [6] REJITH R,KESAVAN D,CHAKRAVARTHY P,et al. Bearings for aerospace applications[J]. Tribology International,2023,181:108312. [7] 李云鹤,谭雁清,马廉洁,等. 水润滑陶瓷滑动轴承材料配副摩擦学性能的研究[J]. 轴承,2024(6):73-78. LI Yunhe,TAN Yanqing,MA Zhengjing,et al. Research on tribological properties of water-lubricated ceramic plain bearing materials[J]. Bearing,2024(6):73-78. [8] 张巍. SiC陶瓷自润滑的研究进展与展望[J]. 摩擦学学报, 2024,44(12):1-13. ZHANG Wei. Research progress and prospect of selflubrication of SiC ceramics[J]. Tribology,2024,44(12):1-13. [9] 吕晓仁,钟兵,黄艳斐,等. 超快激光制备金属抗反射表面的研究进展[J]. 中国表面工程,2021,34(6):90-101. LÜ Xiaoren,ZHONG Bing,HUANG Yanfei,et al. Research progress of metal antireflective surfaces prepared by ultrafast laser[J]. China Surface Engineering,201,34(6):90-101. [10] 孟博,马廉洁,陈景强,等. 氧化铝陶瓷在腐蚀环境下的摩擦磨损性能[J]. 轴承,2021(2):19-23. MENG Bo,MA Jingjing,CHEN Jingqiang,et al. Friction and wear properties of alumina ceramics in corrosive environment[J]. Bearing,2021(2):19-23. [11] LINCE J R. Effective Application of solid lubricants in spacecraft mechanisms[J]. Lubricants,2020,8(7):74. [12] 王志文,刘秀波,周安,等. 表面技术提高农林机械耐磨性能及应用研究进展[J]. 中国表面工程,2024,37(4):102-116. WANG Zhiwen,LIU Xiubo,ZHOU An,et al. Research progress on improving wear resistance of agricultural and forestry machinery by surface technology and its application[J]. China Surface Engineering,2024,37(4):102-116. [13] AMANOV A,PYUN Y,KIM J,et al. Enhancement in wear resistance of sintered silicon carbide at various temperatures[J]. Tribology International,2014,74:28-37. [14] 李淑钰,刘应瑞,郭鹏,等. 海洋环境下物理气相沉积氮/碳基抗磨蚀涂层的研究进展[J]. 表面技术,2021,50(7):44-56. LI Shuyu,LIU Yingrui,GUO Peng,et al. Research progress of nitrogen/carbon-based anti-abrasive coatings by physical vapor deposition in marine environment[J]. Surface Technology,2021,50(7):44-56. [15] 张修峰,邵国栋,刘传成,等. 碳化硅陶瓷基合材料常用的特种加工技术:综述[J]. 机械工程学报,2023,59(1):199-218. ZHANG Xiufeng,SHAO Guodong,LIU Chuancheng,et al. Common special processing techniques of silicon carbide ceramic matrix materials:A review[J]. Journal of Mechanical Engineering,2023,59(1):199-218. [16] 宋伟,李凯民,丁雪兴,等. 浸渍石墨在陶瓷摩擦副下的摩擦腐蚀行为研究[J]. 摩擦学学报2024,44(6):775-788. SONG Wei,LI Kaimin,DING Xuexing,et al. Study on the frictional corrosion behavior of impregnated graphite in ceramic friction pairs[J]. Tribology,24,44(06):775-788. [17] 魏万鑫,苏云峰,樊恒中,等. 氮化硅陶瓷轴承球的滚动摩擦磨损特性与损伤行为[J]. 摩擦学学报,2024,44(9):1256-1265. WEI Wanxin,SU Yunfeng,FAN Hengzhong,et al. Rolling friction and wear characteristics and damage behavior of silicon nitride ceramic bearing Ball[J]. Tribology,2019,44(9):1256-1265. [18] 汪彩芬,徐俊,白彬,等. 氮化硅陶瓷摩擦磨损性能研究进展[J]. 材料导报,2013,27(S2):319-322,333. WANG Caifen,XU Jun,BAI Bin,et al. Research progress on friction and wear properties of silicon nitride ceramics[J]. Materials Review,2013,27(S2):319-322,333. [19] ANDERSSON P,BLOMBERG A. Instability in the tribochemical wear of silicon carbide in unlubricated sliding contacts[J]. Wear,1994,174(1-2):1-7. [20] XU J,KATO K. Formation of tribochemical layer of ceramics sliding in water and its role for low friction[J]. Wear,2000,245(1-2):61-75. [21] LI J F,HUANG J Q,TAN S H,et al. Tribological properties of silicon carbide under water-lubricated sliding[J]. Wear,1998,218(2):167-171. [22] XU J,KATO K,HIRAYAMA T. The transition of wear mode during the running-in process of silicon nitride sliding in water[J]. Wear,1997,205(1-2):55-63. [23] GATES R S,HSU S M. Tribochemistry between water and Si3N4 and SiC:induction time analysis[J]. Tribology Letters,2004,17(3):399-407. [24] PRESSER V,NICKEL K G,KRUMMHAUER O,et al. A model for wet silicon carbide tribo-corrosion[J]. Wear,2009,267(1-4):168-176. [25] AN D. Investigation on the mild to severe wear transition for AZ system magnesium alloys[J]. Journal of Mechanical Engineering,2016,52(6):79. [26] SHARMA S K,KUMAR B V M,KIM Y W. Tribological behavior of silicon carbide ceramics - A Review[J]. Journal of the Korean Ceramic Society,2016,53(6):581-596. [27] WANG Y,HSU S M. Wear and wear transition modeling of ceramics[J]. Wear,1996,195(1-2):35-46. [28] KATO K,ADACHI K. Wear of advanced ceramics[J]. Wear,2002,253(11-12):1097-1104. [29] DONG K,SONG Y,BIAN G,et al. Tribocorrosion behavior of TC18 titanium alloy:A discussion about the interaction between galvanic corrosion and wear[J]. Tribology International,2024,192:109292. [30] PRESSER V,KRUMMHAUER O,NICKEL K G,et al. Tribological and hydrothermal behaviour of silicon carbide under water lubrication[J]. Wear,2009,266(7-8):771-781. [31] CINIERO A,LE ROUZIC J,BAIKIE I,et al. The origins of triboemission -- correlating wear damage with electron emission[J]. Wear,2017,374-375:113-119. [32] CHEN M,KATO K,ADACHI K. Friction and wear of self-mated SiC and Si3N4 sliding in water[J]. Wear,2001,250(1-12):246-255. [33] 翟文杰. 摩擦电化学与摩擦电化学研磨抛光研究进展[J]. 摩擦学学报,2006,26(1):92-96. ZHAI Wenjie. Research progress of triboelectrochemistry and triboelectrochemical grinding and polishing[J]. Tribology,2006,26(1):92-96. [34] KAILER A,AMANN T,KRUMMHAUER O,et al. Influence of electric potentials on the tribological behaviour of silicon carbide[J]. Wear,2011,271(9-10):1922-1927. [35] WANG Y. Thermal elastohydrodynamic lubrication property analysis of water-lubricated tenmat bearing considering debris and surface roughness[J]. Journal of Mechanical Engineering,2017,53(3):121. [36] WOJCIECHOWSKI L,KUBIAK K J,MATHIA T G. Roughness and wettability of surfaces in boundary lubricated scuffing wear[J]. Tribology International,2016,93:593-601. [37] EDACHERY V,SWAMYBABU V,ADARSH D,et al. Influence of surface roughness frequencies and roughness parameters on lubricant wettability transitions in micro-nano scale hierarchical surfaces[J]. Tribology International,2022,165:107316. [38] 李剑锋,黄静琪,谭寿洪,等. 增韧SiC陶瓷在蒸馏水润滑下的摩擦学特性[J]. 硅酸盐学报,1998(3):33-40. LI Jianfeng,HUANG Jingqi,TAN Shouhong,et al. Tribological properties of toughened SiC ceramics under distilled water lubrication[J]. Journal of the Chinese Ceramics Society,1998(3):33-40. [39] WANG X,KATO K,ADACHI K. The Critical Condition for the transition from HL to ML in water lubricated SiC[J]. Tribology Letters,2004,16(4):253-258. [40] JORDI L,ILIEV C,FISCHER T E. Lubrication of silicon nitride and silicon carbide by water:Running in,wear and operation of sliding bearings[J]. Tribology Letters,2004,17(3):367-376. [41] CHEN M,KATO K,ADACHI K. The comparisons of sliding speed and normal load effect on friction coefficients of self-mated Si3N4 and SiC under water lubrication[J]. Tribology International,2002,35(3):129-135. [42] ZHOU F,KATO K,ADACHI K. Friction and wear properties of CNx/SiC in water lubrication[J]. Tribology Letters,2005,18(2):153-163. [43] AMANN T,KAILER A,HERRMANN M. Influence of electrochemical potentials on the tribological behavior of silicon carbide and diamond-coated silicon carbide[J]. Journal of Bio- and Tribo-Corrosion,2015,1(4):30. [44] JOHN M,MENEZES P L. Self-lubricating materials for extreme condition applications[J]. Materials,2021,14(19):5588. [45] ZHOU Y,HIRAO K,YAMAUCHI Y,et al. Tribological properties of silicon carbide and silicon carbide–graphite composite ceramics in sliding contact[J]. Journal of the American Ceramic Society,2003,86(6):991-1002. [46] LLORENTE J,ROMÁN-MANSO B,MIRANZO P,et al. Tribological performance under dry sliding conditions of graphene/silicon carbide composites[J]. Journal of the European Ceramic Society,2016,36(3):429-435. [47] ZISHAN C,HEJUN L,QIANGANG F,et al. Tribological behaviors of SiC/h-BN composite coating at elevated temperatures[J]. Tribology International,2012,56:58-65. [48] LI F,ZHU S,CHENG J,et al. Tribological properties of Mo and CaF2 added SiC matrix composites at elevated temperatures[J]. Tribology International,2017,111:46-51. [49] 焦浩文,陈冰,左彬. C/SiC复合材料的制备及加工技术研究进展[J]. 航空材料学报,2021,41(1):19-34. JIAO Haowen,CHEN Bing,ZUO Bin. Research progress on preparation and processing technology of C/SiC composites[J]. Journal of Aeronautical Materials,201,41(1):19-34. [50] DIAO Q,ZOU H,REN X,et al. A focused review on the tribological behavior of C/SiC composites:Present status and future prospects[J]. Journal of the European Ceramic Society,2023,43(9):3875-3904. [51] 张军战,楼建军,徐永东,等. 不同结构C/SiC复合材料的摩擦磨损性能研究[J]. 摩擦学学报,2006,26(3):218-222. ZHANG Junzhan,LOU Jianjun,XU Yongdong,et al. Tribological and wear properties of C/SiC composites with different structures[J]. Tribology,2006,26(3):218-222. [52] FAN S,ZHANG L,CHENG L,et al. Microstructure and frictional properties of C/SiC brake materials with sandwich structure[J]. Ceramics International,2011,37(7):2829-2835. [53] WEI J,LIN B,WANG H,et al. Friction and wear characteristics of carbon fiber reinforced silicon carbide ceramic matrix (Cf/SiC) composite and zirconia (ZrO2) ceramic under dry condition[J]. Tribology International,2018,119:45-54. [54] YANG Y,ZHU T,SUN N,et al. Mechanical and tribological properties of SiC whisker‐reinforced SiC composites via oscillatory pressure sintering[J]. International Journal of Applied Ceramic Technology,2023,20(4):2499-2510. [55] TANG H,ZENG X,XIONG X,et al. Mechanical and tribological properties of short-fiber-reinforced SiC composites[J]. Tribology International,2009,42(6):823-827. [56] CAI Y,FAN S,YIN X,et al. Effects of graphitization degree in three‐dimensional needled C/SiC composites on tribological properties[J]. International Journal of Applied Ceramic Technology,2011,8(2):317-328. [57] JIANG G,YANG J,XU Y,et al. Effect of graphitization on microstructure and tribological properties of C/SiC composites prepared by reactive melt infiltration[J]. Composites Science and Technology,2008,68(12):2468-2473. [58] KISHORE A,JOHN M,RALLS A M,et al. Ultrasonic nanocrystal surface modification:Processes,characterization,properties,and applications[J]. Nanomaterials,2022,12(9):1415. [59] GUJBA A K,REN Z,DONG Y,et al. Effect of ultrasonic nanocrystalline surface modification on the water droplet erosion performance of Ti 6Al 4V[J]. Surface and Coatings Technology,2016,307:157-170. [60] LIU R,YUAN S,LIN N,et al. Application of ultrasonic nanocrystal surface modification (UNSM) technique for surface strengthening of titanium and titanium alloys:A mini review[J]. Journal of Materials Research and Technology,2021,11:351-377. [61] AMANOV A. Frictional behavior of duplex nano-corrugated and nanostructured Cu alloy produced by UNSM[J]. Procedia Engineering,2013,68:491-496. [62] KHERADMANDFARD M,KASHANI-BOZORG S F,LEE J S,et al. Significant improvement in cell adhesion and wear resistance of biomedical β-type titanium alloy through ultrasonic nanocrystal surface modification[J]. Journal of Alloys and Compounds,2018,762:941-949. [63] EFE Y,KARADEMIR I,HUSEM F,et al. Enhancement in microstructural and mechanical performance of AA7075 aluminum alloy via severe shot peening and ultrasonic nanocrystal surface modification[J]. Applied Surface Science,2020,528:146922. [64] MA C,ANDANI M T,QIN H,et al. Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification[J]. Journal of Materials Processing Technology,2017,249:433-440. [65] LISTYAWAN T A,LEE H,PARK N,et al. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process[J]. Journal of Materials Science & Technology,2020,57:123-130. [66] AMANOV A,PYUN Y,KIM J,et al. Enhancement in wear resistance of sintered silicon carbide at various temperatures[J]. Tribology International,2014,74:28-37. [67] AMANOV A,KIM J,PYUN Y,et al. Wear mechanisms of silicon carbide subjected to ultrasonic nanocrystalline surface modification technique[J]. Wear,2015,332-333:891-899. [68] 王迪,邓国威,杨永强,等. 金属异质材料增材制造研究进展[J]. 机械工程学报,2021,57(1):186-198. WANG Di,DENG Guowei,YANG Yongqiang,et al. Research progress in additive manufacturing of metallic heterogeneous materials[J]. Journal of Mechanical Engineering,2021,57(1):186-198. [69] AMANOV A,KARIMBAEV R. Effect of ultrasonic nanocrystal surface modification temperature:Microstructural evolution,mechanical properties and tribological behavior of silicon carbide manufactured by additive manufacturing[J]. Surface and Coatings Technology,2021,425:127688. [70] DU Y,XIE F,WANG J,et al. Dry friction properties of diamond-coated silicon carbide[J]. Materials,2023,16(10):3640. [71] JAHANMIR S,DECKMAN D E,IVES L K,et al. Tribological characteristics of synthesized diamond films on silicon carbide[J]. Wear,1989,133(1):73-81. [72] 王贺,沈建辉,闫广宇,等. 甲烷浓度对碳化硅基底金刚石薄膜摩擦性能影响[J]. 人工晶体学报,2021,50(11):2067-2074. WANG He,SHEN Jianhui,YAN Guangyu,et al. Effect of methane concentration on tribological properties of silicon carbide based diamond films[J]. Journal of Synthetic Crystals,2021,50(11):2067-2074. [73] WANG X,SHEN X,ZHAO T,et al. Tribological properties of SiC-based MCD films synthesized using different carbon sources when sliding against Si3N4[J]. Applied Surface Science,2016,369:448-459. [74] CHEN N,PU L,SUN F,et al. Tribological behavior of HFCVD multilayer diamond film on silicon carbide[J]. Surface and Coatings Technology,2015,272:66-71. [75] YAN M,WANG X,ZHANG S,et al. Friction and wear properties of GLC and DLC coatings under ionic liquid lubrication[J]. Tribology International,2020,143:106067. [76] CUI M. Influence of modulation ratio on the tribological and electrochemical behaviors of multilayer DLC coatings[J]. Journal of Mechanical Engineering,2018,54(6):25. [77] AL MAHMUD K A H,KALAM M A,MASJUKI H H,et al. An updated overview of diamond-like carbon coating in tribology[J]. Critical Reviews in Solid State and Materials Sciences,2015,40(2):90-118. [78] CHOUDHURY D,MORITA T,SAWAE Y,et al. A novel functional layered diamond like carbon coating for orthopedics applications[J]. Diamond and Related Materials,2016,61:56-69. [79] ERDEMIR A,FENSKE G R. Tribological performance of diamond and diamondlike carbon films at elevated temperatures[J]. Tribology Transactions,1996,39(4):787-794. [80] YONG Q. Research status of the tribological property of diamond-like carbon films[J]. Journal of Mechanical Engineering,2016,52(11):95. [81] HOFMANN D,KUNKEL S,BEWILOGUA K,et al. From DLC to Si-DLC based layer systems with optimized properties for tribological applications[J]. Surface and Coatings Technology,2013,215:357-363. [82] 闫江山,郭鹏,林乃明,等. 双辉等离子渗铬界面层对类石墨碳基涂层力学及磨蚀性能的影响[J]. 表面技术,2024,53(1):169-181. YAN Jiangshan,GUO Peng,LIN Naiming,et al. Effect of double-glow plasma chromized interfacial layer on mechanical and abrasive properties of graphite-like carbon-based coatings[J]. Surface Technology,2018,53(1):169-181. [83] LIU K,KANG J,ZHANG G,et al. Effect of temperature and mating pair on tribological properties of DLC and GLC coatings under high pressure lubricated by MoDTC and ZDDP[J]. Friction,2021,9(6):1390-1405. [84] DU D,LIU D,YE Z,et al. Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy[J]. Applied Surface Science,2014,313:462-469. [85] 马鹏程,周海斌,鲁晓龙,等. 钨掺杂类石墨涂层/蓖麻油酸固液复合润滑体系的摩擦学性能研究[J]. 摩擦学学报,2025,45(3):1-9. MA Pengcheng,ZHOU Haibin,LU Xiaolong,et al. Tribological properties of tungsten-doped graphite-like coating/ricinoleic acid solid-liquid composite lubrication system[J]. Tribology,2025,45(3):1-9. [86] WANG Y,WANG L,XUE Q. Improving the tribological performances of graphite-like carbon films on Si3N4 and SiC by using Si interlayers[J]. Applied Surface Science,2011,257(23):10246-10253. [87] 唐金琼,孔勇,沈晓冬. 碳化物衍生碳的制备及其应用研究进展[J]. 化工进展,2022,41(2):791-802. TANG Jinqiong,KONG Yong,SHEN Xiaodong. Research progress on preparation and application of carbide-derived carbon[J]. Chemical industry and Engineering Progress ,2022,41(2):791-802. [88] GOGOTSI Y,NIKITIN A,YE H,et al. Nanoporous carbide-derived carbon with tunable pore size[J]. Nature Materials,2003,2(9):591-594. [89] SUI J,LU J. Formulated self-lubricating carbon coatings on carbide ceramics[J]. Wear,2011,271(9-10):1974-1979. [90] CHOI H J,BAE H T,LEE J K,et al. Sliding wear of silicon carbide modified by etching with chlorine at various temperatures[J]. Wear,2009,266(1-2):214-219. [91] ERDEMIR A,KOVALCHENKO A,MCNALLAN M J,et al. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films[J]. Surface and Coatings Technology,2004,188-189:588-593. [92] GAO F,LU J,LIU W. Tribological behavior of carbide-derived carbon coating on SiC polycrystal against SAE52100 steel in moderately humid air[J]. Tribology Letters,2007,27(3):339-345. [93] GORELIK T,URBAN S,FALK F,et al. Carbon onions produced by laser irradiation of amorphous silicon carbide[J]. Chemical Physics Letters,2003,373(5-6):642-645. [94] AONO Y,ANDO S,HIRATA A. Microtribological modification of silicon carbide surface by laser irradiation[J]. Precision Engineering,2016,43:270-276. [95] 王东伟,李发强,黄起昌,等. 表面织构对滑动电接触界面摩擦学行为的影响[J]. 表面技术,2024,53(9):137-147. WANG Dongwei,LI Faqiang,HUANG Qichang,et al. Influence of surface texture on tribological behavior of sliding electrical contact interface[J]. Surface Technology,2019,53(9):137-147. [96] 赵立新,章宝玲,刘洋,等. 基于表面织构技术改善摩擦学性能的研究进展[J]. 摩擦学学报,2022,42(1):202-224. ZHAO Lixin,ZHANG Baoling,LIU Yang,et al.Research progress of improving tribological properties based on surface texture technology[J]. Tribology,2022,42(1):202-224. [97] MURZIN S,MELNIKOV A,VASILIEV N,et al. Determining ways of improving the tribological properties of the silicon carbide ceramic using a pulse-periodic laser treatment[J]. Computer Optics,2015,39(1):64-69. [98] XING Y,DENG J,WU Z,et al. High friction and low wear properties of laser-textured ceramic surface under dry friction[J]. Optics & Laser Technology,2017,93:24-32. [99] MURZIN S P,BALYAKIN V B. Microstructuring the surface of silicon carbide ceramic by laser action for reducing friction losses in rolling bearings[J]. Optics & Laser Technology,2017,88:96-98. [100] CHEN X,WANG C,JIANG J,et al. Effect of picosecond laser texturing on the friction behavior of silicon carbide in hybrid ceramic bearings under dry and water lubrication[J]. Ceramics International,2023,49(18):29857-29869. [101] WANG X,ADACHI K,OTSUKA K,et al. Optimization of the surface texture for silicon carbide sliding in water[J]. Applied Surface Science,2006,253(3):1282-1286. [102] 王鹏洋,龙威,赵章行,等. SiC表面水滴型微织构的水润滑特性研究[J]. 表面技术,2024,53(1):96-104. WANG Pengyang,LONG Wei,ZHAO Zhangxing,et al. Study on water lubrication characteristics of SiC surface droplet microtexture[J]. Surface Technology,2019,53(1):96-104 [103] TOMIZAWA H,FISCHER T E. Friction and wear of silicon nitride and silicon carbide in water:hydrodynamic lubrication at low sliding speed obtained by tribochemical wear[J]. ASLE Transactions,1987,30(1):41-46. [104] STREY N F,RAMOS R,SCANDIAN C. Superlubricity and running-in wear maps of water-lubricated dissimilar ceramics[J]. Wear,2022,498-499:204328. [105] 李杰,王超磊,刘玉德,等. 激光微织构与自组装对铝合金表面润湿性的影响[J]. 材料工程,2018,46(1):53-60. LI Jie,WANG Chaolei,LIU Yude,et al. Effect of laser micro-texture and self-assembly on surface wettability of aluminum alloy[J]. Journal of Materials Engineering,2018,46(1):53-60. [106] HUANG J,CAI L,ZHANG W,et al. Influence of surface structure/wettability on tribological properties of titanium[J]. Tribology International,2022,174:107747. [107] MA J,LIU Y,ZHANG N,et al. Wettability transition and tribological properties of hydrophobic alloy surfaces prepared by one-step method[J]. Tribology International,2023,178:108020. [108] MA C,BAI S,MENG Y,et al. Hydrophilic control of laser micro-square-convexes SiC surfaces[J]. Materials Letters,2013,109:316-319. [109] SERLES P,NIKUMB S,BORDATCHEV E. Superhydrophobic and superhydrophilic functionalized surfaces by picosecond laser texturing[J]. Journal of Laser Applications,2018,30(3):032505. [110] 董博,邓承继,余超,等. 烧成温度对反应烧结碳化硅蜂窝陶瓷的性能调控[J]. 陶瓷学报,2023,44(1):89-94. DONG Bo,DENG Chengji,YU Chao,et al. Control of sintering temperature on properties of react-sintered silicon carbide honeycomb ceramics[J] Journal of Ceramics,2023,44(1):89-94 [111] 刘敏. 反应烧结SiC陶瓷摩擦磨损性能研究[D]. 西安:西安理工大学,2005. LIU Min. Study on friction and wear properties of reaction-sintered SiC ceramics [D]. Xi’an:Xi’an University of Technology,2005. [112] LU Z L,ZHOU Y X,ZHANG M,et al. Dry friction behaviour of reaction-bonded silicon carbide at high temperature[J]. Key Engineering Materials,2007,336-338:2472-2474. [113] SANG K,LIU L,JIN Z. Improvements on dry friction and wear properties for reaction-sintered silicon carbide by the matching size of SiC particles[J]. Materials & Design,2007,28(2):735-738. [114] 李文魁,桑可正,金志浩,等. 颗粒级配对SiC-Si复相陶瓷材料摩擦性能的影响[J]. 西安石油大学学报,2005(2):61-64. LI Wenkui,SANG Kezheng,JIN Zhihao,et al. Effect of particle size matching on frictional properties of SiC-Si composite ceramics[J]. Journal of Xi’an Shiyou University,2005(2):61-64. [115] SANG K,JIN Z. Unlubricated friction of reaction-sintered silicon carbide and its composite with nickel[J]. Wear,2000,246(1-2):34-39. [116] 许洁,周小兵,徐凯,等. 高致密碳化硅陶瓷的低温液相烧结[J]. 陶瓷学报,2022,43(3):448-454. XU Jie,ZHOU Xiaobing,XU Kai,et al. Low temperature liquid phase sintering of high density silicon carbide ceramics[J]. Journal of Ceramics,202,43(3):448-454. [117] BORRERO-LÓPEZ O,ORTIZ A L,GUIBERTEAU F,et al. Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC:An overview[J]. Journal of the European Ceramic Society,2007,27(11):3351-3357. [118] ORTIZ A L,BORRERO-LÓPEZ O,QUADIR M Z,et al. A route for the pressureless liquid-phase sintering of SiC with low additive content for improved sliding-wear resistance[J]. Journal of the European Ceramic Society,2012,32(4):965-973. [119] 林盼盼,林金城,于迪,等. 放电等离子体烧结技术在材料连接领域的应用现状[J]. 焊接学报,2022,43(11):15-21. LIN Panpan,LIN Jincheng,YU Di,et al. Application of discharge plasma sintering technology in the field of material bonding[J]. Transactions of The China Welding Institution,2022,43(11):15-21. [120] CIUDAD E. Sliding-wear resistance of ultrafine-grained SiC densified by spark plasma sintering with 3Y2O3+5Al2O3 or Y3Al5O12 additives[J]. Scripta Materialia,2013. [121] GUTIERREZ-MORA F,LARA A,MUÑOZ A,et al. Influence of microstructure and crystallographic phases on the tribological properties of SiC obtained by spark plasma sintering[J]. Wear,2014,309(1-2):29-34. |
[1] | 解忠良, 焦见, 杨康, 杨铭. 船用新型夹心轴承热耦合特征研究[J]. 机械工程学报, 2025, 61(5): 275-284. |
[2] | 梁庆琛, 梁鹏, 郭峰, 姜芙林, 张晓寒, 李书义. 供给条件对微量第二润滑介质扩散特性的影响[J]. 机械工程学报, 2025, 61(1): 274-289. |
[3] | 梁奉爽, 吴明阳, 刘立飞. 基于材料冲击特性的碳化硅超声磨削机理及亚表面损伤特征研究[J]. 机械工程学报, 2024, 60(9): 75-85. |
[4] | 陈钊杰, 谢晋, 刘军汉, 熊长新, 李迪帆. 脉冲放电驱动磨料流辅助磨削单晶碳化硅研究[J]. 机械工程学报, 2024, 60(9): 383-392. |
[5] | 张博楠, 黄辉, 武民. 单晶4H-SiC的摩擦诱导化学机械复合加工(FCMM)实验研究[J]. 机械工程学报, 2024, 60(7): 401-410. |
[6] | 华东鹏, 周青, 王婉, 李硕, 王志军, 王海丰. 碳化硅纳米抛光亚表面损伤机理的分子动力学模拟[J]. 机械工程学报, 2024, 60(5): 231-240. |
[7] | 史林炜, 任志英, 黄子豪, 杜鹏程, 刘天彦. 装备减振新型基础件金属橡胶材料研究进展[J]. 机械工程学报, 2024, 60(24): 104-126. |
[8] | 解忠良, 焦见, 杨铭, 田佳彬, 刘时铭, 杨康. 新型复合轴承流固声耦合特性研究[J]. 机械工程学报, 2024, 60(24): 340-349. |
[9] | 刘伟, 胡利方, 郑植, 高伟, 丑昭, 成晓, 王勇. 玻璃与碳化硅阳极键合机理及其力学性能研究[J]. 机械工程学报, 2024, 60(16): 151-159. |
[10] | 解忠良, 焦见, 杨康. 水润滑夹心轴承流-固耦合动力学特性研究[J]. 机械工程学报, 2023, 59(3): 86-97. |
[11] | 张修峰, 邵国栋, 刘传成, 史振宇, 邹斌, 王继来, 张成鹏. 碳化硅陶瓷基复合材料常用的特种加工技术:综述[J]. 机械工程学报, 2023, 59(1): 199-218. |
[12] | 解忠良, 焦见, 杨康. 舰船用水润滑轴承微观界面润滑机理研究[J]. 机械工程学报, 2022, 58(21): 186-200. |
[13] | 戴剑博, 苏宏华, 傅玉灿, 丁文锋, 司垒, 陈佳佳. 磨削速度对碳化硅陶瓷磨削损伤影响机制研究[J]. 机械工程学报, 2022, 58(21): 316-330. |
[14] | 戴剑博, 苏宏华, 王忠宾, 丁文锋, 傅玉灿, 陈佳佳. 多晶碳化硅陶瓷磨削裂纹损伤形成机理研究[J]. 机械工程学报, 2022, 58(13): 307-320. |
[15] | 王闯, 张益钦, 袁恒川, 邢子文. 水润滑双螺杆空压机工作过程传热传质特性研究[J]. 机械工程学报, 2021, 57(8): 247-254. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||