• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (13): 174-191.doi: 10.3901/JME.2025.13.174

• 特邀专栏:价值链协同赋能的复杂制造系统:趋势、技术与挑战 • 上一篇    

扫码分享

核电装备价值链协同质量管控知识图谱构建研究

杨佳幸, 温沛涵, 胡亚萍   

  1. 重庆大学管理科学与房地产学院 重庆 400044
  • 收稿日期:2024-08-12 修回日期:2025-02-08 发布日期:2025-08-09
  • 作者简介:杨佳幸,男,2000年出生。主要研究方向为质量知识图谱。;Email:SHyang@stu.cqu.edu.cn;温沛涵(通信作者),男,1982年出生,博士,副教授,博士研究生导师,主要研究方向为知识图谱与复杂网络、信息系统与智能交互、智慧物流与供应链管理。;Email:wen@cqu.edu.cn;胡亚萍,女,2001年出生,硕士研究生。主要研究方向为质量知识图谱。;Email:hyapg@stu.cqu.edu.cn

Research on Knowledge Graph Construction of Nuclear Power Equipment Quality Control with Value Chain Collaboration

YANG Jiaxing, WEN Peihan, HU Yaping   

  1. School of Management Science and Real Estate, Chongqing University, Chongqing 400044
  • Received:2024-08-12 Revised:2025-02-08 Published:2025-08-09

摘要: 针对核电装备价值链上各类信息孤立、缺乏联系以及在组织与平台间流动存在信息损耗和数据量缺失的问题,分析核电装备价值链质量管控的需求,提出引入知识图谱组织质量文本中蕴含的知识,以便分享和重用,从而支持协同质量管控的思想,并研究其构建和应用。首先,基于对核电装备价值链质量文本特点的分析,设计一个多阶段层次化跨时空的领域本体模型。其次,提出一种基于小样本学习的实体识别模型和基于相对位置的实体关系匹配方法,进而提取知识三元组,构建知识图谱。再次,综合场景分析与专家访谈,设计一套用户与知识图谱交互的问答模版,定义一个检索增强式的问答框架,并开发一个面向核电装备价值链协同质量管控的问答应用。最后,通过与ChatGPT大语言模型和关键词匹配模型对比,验证上述方法的有效性及优越性。改进的实体识别模型在处理质量文本数据集较小的情况下展现出更好的效果,借助用户与知识图谱交互可有效支持核电装备价值链协同质量管控,对提升管理水平及效率均具有较好的作用。

关键词: 价值链协同, 质量管控, 知识图谱, 元学习

Abstract: To address the issues of information isolation, lack of connectivity, and data loss and deficiency during the flow of information between organizations and platforms in the value chain of nuclear power equipment, the quality control requirements of the nuclear power equipment value chain are analyzed. The knowledge graph, whose construction and application are further explored, introduced to organize the knowledge embedded in quality texts, facilitating sharing and reusing, to support collaborative quality control. Firstly, a multi-stage hierarchical ontology model across time and space is designed based on an analysis of characteristics of quality texts in the nuclear power equipment value chain. Secondly, an improved few-shot-learning-based entity recognition model and a relative position-based entity relationship matching method are proposed, and then knowledge triples are extracted to construct the knowledge graph. Thirdly, through comprehensive scenario analysis and expert interviews, a set of question-and-answer templates for user interaction with the knowledge graph is designed, a frame based on Retrieval Augmented Generation is defined, and an application for questions and answers aiming at collaborative quality control in the nuclear power equipment value chain is developed. Finally, the effectiveness and superiority of the above methods are validated by comparing with the large language models ChatGPT and keyword matching model. The improved entity recognition model demonstrates better performance in handling smaller quality texts. And the nuclear power equipment quality control with value chain collaboration can be effectively supported through user interaction with the knowledge graph, which contributes positively to the improvement of management levels and efficiency.

Key words: value chain collaboration, quality control, knowledge graph, meta-learning

中图分类号: