机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 23-45.doi: 10.3901/JME.2025.09.023
• 特邀专栏:高性能制造 • 上一篇
李靖1,2, 徐天昊1,2, 罗明1,2
收稿日期:
2024-05-11
修回日期:
2024-11-22
发布日期:
2025-06-12
通讯作者:
罗明,男,1983年出生,博士,教授,博士研究生导师。主要研究方向为智能制造技术、复杂结构精密制造、制造过程监测优化及航空复材制造技术。E-mail:luoming@nwpu.edu.cn
E-mail:luoming@nwpu.edu.cn
作者简介:
李靖,女,1993年出生,副教授。主要研究方向为钛、镁、陶瓷基复合材料等航宇轻质材料制造宏微观力学行为调控。E-mail:lijing0808@npwu.edu.cn
基金资助:
LI Jing1,2, XU Tianhao1,2, LUO Ming1,2
Received:
2024-05-11
Revised:
2024-11-22
Published:
2025-06-12
摘要: 新一代高推重比航空发动机对压气机叶片的抗疲劳制造技术提出了更高要求。切削加工作为叶片减材制造的重要手段,在保证叶片几何精度的同时直接影响叶片表面完整性。大量研究表明叶片表面完整性与其疲劳性能紧密相关。当前叶片的主要金属材料为轻质高强的钛合金和高温合金,但由于钛合金和高温合金是典型的受力热影响显著的材料,加之切削加工过程中存在十分复杂的力-热能场,其耦合作用对叶片表面完整性的影响十分巨大。因此,为探明压气机叶片高性能切削加工技术的发展方向,首先分析了压气机叶片型面的发展历程和切削加工叶片疲劳失效的原因;其次,分别针对光滑表面叶片和仿生表面叶片对高性能切削加工技术的国内外研究现状进行了调研和梳理;最后,总结了叶片高性能切削加工中存在的问题,并对压气机叶片高性能切削加工研究的未来发展趋势进行了展望。为实现面向抗疲劳性能优化的航空发动机压气机叶片切削加工提供了一定的发展趋势参考。
中图分类号:
李靖, 徐天昊, 罗明. 压气机叶片高性能切削加工技术研究进展[J]. 机械工程学报, 2025, 61(9): 23-45.
LI Jing, XU Tianhao, LUO Ming. A Review of Aero-engine Compressor Blade Cutting Technology for High Fatigue Performance[J]. Journal of Mechanical Engineering, 2025, 61(9): 23-45.
[1] 冯南平,向巧,沈荣骏,等. 航空发动机关键核心技术攻关的组织策略研究[J]. 中国工程科学,2022,24(4):222-229. FENG Nanping,XIANG Qiao,SHEN Rongjun,et al. Organization strategies of innovation forces for the breakthrough of key core technologies in aero-engine industry[J]. Strategic Study of CAE,2022,24(4):222-229. [2] 尹泽勇,丁水汀,李果,等. 航空发动机下一代适航规章制定策略和技术路径[J]. 中国工程科学,2022,24(4):230-239. YIN Zeyong,,DING Shuiting,LI Guo,et al. Formulating strategy and technology path for nextgeneration airworthiness regulations of aero-engines[J]. Strategic Study of CAE,2022,24(4):230-239. [3] YAN B,HAO Y,ZHU L,et al. Towards high milling accuracy of turbine blades:A review[J]. Mechanical Systems and Signal Processing,2022,170:108727. [4] 梁春华. 高性能航空发动机先进风扇和压气机叶片综述[J]. 航空发动机,2006(3):48-52. LIANG Chunhua. Overview of advanced fan and compressor blade/vane in high performance aeroengine[J]. Aero Engine,2006(3):48-52. [5] 刘庆瑔. 航空发动机钛合金叶片制造技术及失效分析[M]. 北京:航空工业出版社,2018. LIU Qingxian. Aero-engine titanium alloy blade manufactur-ing technology and failure analysis[M]. Beijing:Aviation Industry Press,2018. [6] THESKA F,STREET S R,LISON-PICK M,et al. Grain boundary microstructure-property relationships in the cast & wrought Ni-based superalloy René 41 with boron and carbon additions[J]. Acta Materialia,2023,258:119235. [7] YANG P,JOHNSON K L,CARROLL J D,et al. Thermophysical properties of additively manufactured Ti-5553 alloy[J]. Additive Manufacturing,2023,76:103769. [8] ZHU Z,LUO D,ZHANG J,et al. Nano-cutting deformation characteristics and atomic-scale behavior of two-phase γ/γ' nickel-based single crystal superalloy[J]. Intermetallics,2023,161:107985. [9] ZHOU T,WU Q,ZHAO G,et al. Analysis of the effect of tool geometry on the cutting process of polycrystalline Fe-Cr-W alloy based on molecular dynamics simulation[J]. Journal of Manufacturing Processes,2023,95:405-414. [10] JI H,SONG Q,CAI W,et al. Episodes of single-crystal material removal mode and machinability in the micro-cutting process of superalloy Inconel-718[J]. Journal of Materials Research and Technology,2023,24:2074-2085. [11] HAO Z,CUI R,FAN Y,et al. Diffusion mechanism of tools and simulation in nanoscale cutting the Ni-Fe-Cr series of Nickel-based superalloy[J]. International Journal of Mechanical Sciences,2019,150:625-636. [12] 杜茂华,程正,王神送,等. 损伤演化对Ti6Al4V高速切削仿真结果的影响[J]. 航空学报,2019,40(7):279-291. DU Maohua,CHENG Zheng,WANG Shensong,et al. Effect of dam-age evolution on simulation results of high speed machining Ti6Al4V[J]. Acta Aeronautica et Astronautica Sinica,2019,40(7):279-291. [13] 何柏林,邓海鹏. 表面完整性研究现状及发展趋势[J]. 表面技术,2015,44(9):140-146. HE Bolin,DENG Haipeng. Research status and development trend of surface integrity[J]. Surface Technology,2015,44(9):140-146. [14] 盖鹏涛,陈福龙,尚建勤,等. 喷丸强化对表面完整性影响的研究现状与发展[J]. 航空制造技术,2016(20):16-21. GAI Pengtao,CHEN Fulong,SHANG Jianqin,et al. Recent situa-tion and development trend of shot peening on surface in-tegrity[J]. Aeronautical Manufacturing Technology,2016(20):16-21. [15] 张旭,王晓强,田英健,等. 基于表面完整性的表面强化技术研究综述[J]. 塑性工程学报,2023,30(10):12-32. ZHANG Xu,WANG Xiaoqiang,TIAN Yingjian,et al. A review on surface strengthening technology based on surface integ-rity[J]. Journal of Plasticity Engineering,2023,30(10):12-32. [16] 李其汉,王延荣. 航空发动机结构强度设计问题[M]. 上海:上海交通大学出版社,2014. LI Qihan,WANG Yanrong. Aero-engine structural strength design problems[M]. Shanghai:Shanghai Jiaotong University Press,2014. [17] SINGH R,SHARMA V. Machining induced surface integrity behavior of nickel-based superalloy:Effect of lubricating environments[J]. Journal of Materials Processing Technology,2022,307:117701. [18] TOUBHANS B,FROMENTIN G,VIPREY F,et al. Machinability of inconel 718 during turning:Cutting force model considering tool wear,influence on surface integrity[J]. Journal of Materials Processing Technology,2020,285:116809. [19] XIA Z,SHAN C,ZHANG M,et al. Machinability of γ-TiAl:A review[J]. Chinese Journal of Aeronautics,2023,36(7):40-75. [20] DU Y,LU M,LIN J,et al. Experimental and simulation study of ultrasonic elliptical vibration cutting SiCp/Al composites:Chip formation and surface integrity study[J]. Journal of Materials Research and Technology,2023,22:1595-1609. [21] ZHOU J,LU M,LIN J,et al. Investigation of surface integrity transition of SiCp/Al composites based on specific cutting energy during ultrasonic elliptical vibration assisted cutting[J]. Journal of Manufacturing Processes,2022,79:654-665. [22] ZHU X,GUO Z,ZHANG Y,et al. Numerical study of aerodynamic characteristics on a straight-bladed vertical axis wind turbine with bionic blades[J]. Energy,2022,239:122453. [23] TIAN C,LIU X,WANG J,et al. Effects of bionic blades inspired by the butterfly wing on the aerodynamic performance and noise of the axial flow fan used in air conditioner[J]. International Journal of Refrigeration,2022,140:17-28. [24] 王加浩,龚东巧,刘小民,等. 采用仿鲤科鱼C型启动构型叶片的多翼离心风机气动性能研究[J]. 西安交通大学学报,2022,56(9):57-68. WANG Jiahao,GONG Dongqiao,LIU Xiaomin,et al. Aerodynamic performance of multi-blade centrifugal fan with bionic blades inspired by c-type start of cyprinidae[J]. Journal of Xi'an Jiaotong University,2022,56(9):57-68. [25] 印玮,杨爱玲,陈二云,等. 仿生轴流风机气动噪声特性的实验研究[J]. 热能动力工程,2022,37(10):51-59. YIN Wei,YANG Ailing,CHEN Eryun,et al. Experimental study on aerodynamic noise characteristics of bionic axial flow fans[J]. Journal of Engineering for Thermal Energy and Power,2022,37(10):51-59. [26] ZHANG Y,LI Q A,ZHU X,et al. Effect of the bionic blade on the flow field of a straight-bladed vertical axis wind turbine[J]. Energy,2022,258:124834. [27] DAI C,GUO C,GE Z,et al. Study on drag and noise reduction of bionic blade of centrifugal pump and mechanism[J]. Journal of Bionic Engineering,2021,18(2):428-440. [28] WANG J,LIU X,TIAN C,et al. Aerodynamic performance improvement and noise control for the multi-blade centrifugal fan by using bio-inspired blades[J]. Energy,2023,263:125829. [29] YU H,HAN Z,ZHANG J,et al. Bionic design of tools in cutting:Reducing adhesion,abrasion or friction[J]. Wear,2021,482-483:203955. [30] XIAO G,ZHANG Y,HE Y,et al. Optimization of belt grinding stepover for biomimetic micro-riblets surface on titanium alloy blades[J]. The International Journal of Advanced Manufacturing Technology,2020,110(5):1503-1513. [31] ZHENG T,ZHAO C,HE J. Research on fatigue performance of offshore wind turbine blade with basalt fiber bionic plate[J]. Structures,2023,47:466-481. [32] 何小妹,刘峻峰,何学军,等. 浅谈航空发动机叶片几何参数测试计量保障体系[J]. 计测技术,2021,41(2):51-55. HE Xiaomei,LIU Junfeng,HE Xingjun,et al. Discussion on meas-urement and metrology assurance system of aero-engine blade geometry parameters[J]. Metrology and Measure-ment Technology,2021,41(2):51-55. [33] KAMINSKI M,LOTH E,GRIFFITH D T,et al. Ground testing of a 1% gravo-aeroelastically scaled additively-manufactured wind turbine blade with bio-inspired structural design[J]. Renewable Energy,2020,148:639-650. [34] QIN L,HUANG X,SUN Z,et al. Synergistic effect of sharkskin-inspired morphologies and surface chemistry on regulating stick-slip friction[J]. Tribology International,2023,187:108765. [35] HUANG H,ZHANG Y,REN L. Particle erosion resistance of bionic samples inspired from skin structure of desert lizard,Laudakin stoliczkana[J]. Journal of Bionic Engineering,2012,9(4):465-469. [36] SONG W,CHEN Y,MU Z,et al. A feather-inspired interleaf for enhanced interlaminar fracture toughness of carbon fiber reinforced polymer composites[J]. Composites Part B:Engineering,2022,236:109827. [37] 杨凌,韩露,钟兢军. 压气机叶片仿鲨鱼鳃开槽对叶栅气动性能的影响[J]. 推进技术,2023,44(2):101-111. YANG Ling,HAN Lu,ZHONG Jingjun. Effects of shark gill-like slotted structure on aerodynamic performance in com-pressor cascade[J]. Journal of Propulsion Technology,2023,44(2):101-111. [38] 何水. 钛合金叶片高气流动力性能仿生表面砂带磨削方法及其实验研究[D].重庆:重庆大学,2022. HE Shui. Research on belt grinding method of bionic sur-face on titanium alloy blade with high airflow dynamic performance and its experiment[D]. Chongqing:Chongqing University,2022. [39] 李茜,张福禄,赵子华. 镍基单晶/柱晶高温合金超高周疲劳研究进展[J]. 航空学报,2021,42(5):111-122. LI Xi,ZHANG Fulu,ZHAO Zihua. Very high cycle fatigue of nickel-based single-crystal and directionally solidified superalloys:Review[J]. Acta Aeronautica et Astronautica Sinica,2021,42(5):111-122. [40] QU A,LI F. Effect of double crack on fatigue crack growth life of 3D printing compressor impeller[J]. Thin-Walled Structures,2023,189:110883. [41] 李业欣,张银东,张鑫佳. 发动机高压压气机转子叶片断裂分析[J]. 失效分析与预防,2018,13(4):233-237. LI Yexin,ZHANG Yindong,ZHANG Xinjia. Fracture analysis of compressor rotor blade in engine[J]. Failure Analysis and Prevention,2018,13(4):233-237. [42] 李洋,佟文伟,栾旭,等. 发动机压气机转子叶片裂纹分析[J]. 失效分析与预防,2016,11(1):51-55. LI Yang,TONG Wenwei,LUAN Xu,et al. Fracture analysis of air-compressor rotor blade of aero-engine[J]. Failure Analysis and Prevention,2016,11(1):51-55. [43] 缪宏博,刘新灵. 某型发动机高压压气机叶片开裂原因分析[J]. 金属热处理,2007,32:79-83. MU Hongbo,LIU Xinling. Failure analysis of high-pressure compressor blades in aero-engine[J]. Heat Treatment of Metals,2007,32:79-83. [44] ZHONG S,JIN G,YE T. Isogeometric vibration and material optimization of rotating in-plane functionally graded thin-shell blades with variable thickness[J]. Thin-Walled Structures,2023,185:110593. [45] CHU Y J,LAM H F. Comparative study of the performances of a bio-inspired flexible-bladed wind turbine and a rigid-bladed wind turbine in centimeter-scale[J]. Energy,2020,213:118835. [46] 周永鑫. 切削加工表面塑性变形对试件疲劳寿命的影响研究[D]. 淄博:山东理工大学,2021. ZHOU Yongxin. Study on the effect of plastic deformation of cutting surface on the fatigue life of specimens[D]. Zibo:Shandong University of Technology,2021. [47] 叶能永,程明,张士宏,等. 残余应力和粗糙度对叶片振动疲劳性能的影响[J]. 材料科学与工艺,2015,23(5):1-5. YE Nengyong,CHENG Ming,ZHANG Shihong,et al. Influence of residual stress and roughness on the vibration fatigue of blade[J]. Materials Science and Technology,2015,23(5):1-5. [48] WANG X,HUANG C,ZOU B,et al. Experimental study of surface integrity and fatigue life in the face milling of Inconel 718[J]. Frontiers of Mechanical Engineering,2018,13:243-250. [49] LI X,ZHAO P,NIU Y,et al. Influence of finish milling parameters on machined surface integrity and fatigue behavior of Ti1023 workpiece[J]. The International Journal of Advanced Manufacturing Technology,2017,91:1297-1307. [50] SURARATCHAI M,LIMIDO J,MABRU C,et al. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy[J]. International Journal of Fatigue,2008,30(12):2119-2126. [51] 杨东. 基于长疲劳寿命的钛合金Ti6Al4V铣削加工表面完整性研究[D]. 济南:山东大学,2017. YANG Dong. Milling induced surface integrity and its effects on fatigue life of the titanium alloy Ti6Al4V[D]. Jinan:Shandong University,2017. [52] GUO Y B,WARREN A W,HASHIMOTO F. The basic relationships between residual stress,white layer,and fatigue life of hard turned and ground surfaces in rolling contact[J]. CIRP Journal of Manufacturing Science and Technology,2010,2(2):129-134. [53] JING L,PAN Q,LONG J,et al. Effect of volume fraction of gradient nanograined layer on high-cycle fatigue behavior of Cu[J]. Scripta Materilia,2019,161:74-77. [54] BAUDOIN P,MAGNIER V,EL BARTALI A,et al. Numerical investigation of fatigue strength of grain size gradient materials under heterogeneous stress states in a notched specimen[J]. International Journal of Fatigue,2016,87:132-142. [55] HOUCHUAN Y,ZHITONG C,ZITONG Z. Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling[J]. The International Journal of Advanced Manufacturing Technology,2015,78:1113-1126. [56] 朱平忠. 铣削/热处理工艺对高温合金GH4169加工表面完整性的影响[D]. 济南:山东大学,2023. ZHU Pingzhong. Machined surface integrity by mechanical milling/heat treatment combined processing superalloy GH4169[D]. Jinan:Shandong University,2023. [57] 施春宇. 切削加工过程与残余应力仿真研究[D]. 兰州:兰州理工大学,2014. SHI Chunyu. The simulation study of machining process and residual stress[D]. Lanzhou:Lanzhou University of Science and Technology,2014. [58] 张岩. 钛合金切削表面完整性及疲劳寿命预测模型研究[D]. 沈阳:沈阳理工大学,2023. ZHANG Yan. Research on titanium alloy cutting surface integrity and fatigue life prediction model[D]. Shenyang:Shenyang University of Science and Technology,2023. [59] KONG K,DYER K,PAYNE C,et al. Progress and trends in damage detection methods,maintenance,and data-driven monitoring of wind turbine blades-a review[J]. Renewable Energy Focus,2023,44:390-412. [60] CHEN X,SEMENOV S,MCGUGAN M,et al. Fatigue testing of a 14.3 m composite blade embedded with artificial defects damage growth and structural health monitoring[J]. Composites Part A:Applied Science and Manufacturing,2021,140:106189. [61] YIN X,LI X,LIU Y,et al. Surface integrity and fatigue life of Inconel 718 by ultrasonic peening milling[J]. Journal of Materials Research and Technology,2023,22:1392-1409. [62] YUAN T,DOU M,LIU L,et al. Improving high temperature fretting fatigue performance of nickel-based single crystal superalloy by shot peening[J]. International Journal of Fatigue,2023,171:107563. [63] 聂祥樊,李应红,何卫锋,等. 航空发动机部件激光冲击强化研究进展与展望[J]. 机械工程学报,2021,57(16):293-305. NIE Xiangfan,LI Yinghong,HE Weifeng,et al. Research progress and prospect of laser shock peening technology in aero-engine components[J]. Journal of Mechanical Engineering,2021,57(16):293-305. [64] 张鸿滨,赵文硕,郭致远,等. 车削和铣削加工表面塑性变形对TC4试件疲劳性能的影响[J]. 表面技术,2023,52(2):35-42. ZHANG Hongbing,ZHAO Wenshuo,GUO Zhiyuan,et al. Effects of turned and milled surface plastic deformation on fatigue properties of TC4 specimens[J]. Surface Technology,2023,52(2):35-42. [65] 韩康宁. 基于疲劳寿命的航空高性能材料球头铣削加工表面完整性研究[D].淄博:山东理工大学,2021. HAN Kangning. Research on surface integrity of aviation high performance material ball end milling based on fatigue life[D]. Zibo:Shandong University of Technology,2021. [66] 史玉凯. 铣削参数对GH4169高温合金表面完整性及低周疲劳性能影响[D]. 上海:华东理工大学,2020. SHI Yukai. Effect of milling parameters on surface integrity and low cycle fatigue performance of GH4169 superal-loy[D]. Shanghai:East China University of Science and Technology,2020. [67] 朱立华,苏雷,徐春,等. 铣削参数对镍基高温合金FGH4113A加工表面完整性的影响[J]. 机械工程材料,2023,47(8):8-17. ZHU Lihua,SU Lei,XU Chun,et al. Effect of milling parame-ters on machined surface integrity of nickel-based sup-eralloy FGH4113A[J]. Materials and Mechanical Engi-neering,2023,47(8):8-17. [68] 纪任可,郑光明,韩康宁,等. 高温合金GH4169球头刀铣削表面完整性测试实验研究[J]. 机床与液压,2022,50(10):36-40. JI Renke.,ZHENG Guangming.,HAN Kanging.,et al. Experimental study on surface integrity test of superalloy GH4169 Ball-end cutter milling[J]. Machine Tools and Hydraulics,2022,50(10):36-40. [69] 郭克. Inconel718镍基高温合金连续铣削表面完整性研究[D]. 长春:长春理工大学,2022. GUO Ke. Research on surface integrity of inconel 718 nickel-based superalloy continuous milling[D]. Changchun:Changchun University of Science and Technology,2022. [70] 侯冠明. 钛合金Ti6Al4V多工步切削加工表面完整性研究[D]. 济南:山东大学,2019. HOU Guanming. Surface integrity in multi-step machining of titanium alloy Ti6Al4V[D]; Jinan:Shandong University,2019. [71] 蓝朝锐. 钛合金Ti-5553低温车削表面完整性及其对疲劳寿命影响研究[D]. 哈尔滨:哈尔滨理工大学,2020. LAN Chaorui. Study of the surface integrity and its influence on fatigue life during cryogenic turning titanium Ti-5553[D]. Harbin:Harbin Institute of Technology,2020. [72] 梁晓亮. 刀具磨损状态对钛合金Ti-6Al-4V加工表面完整性的影响规律研究[D]. 济南:山东大学,2021. LIANG Xiaoliang. Effects of tool wear state on the machined surface intergrity of titanium alloy Ti-6Al-4V[D]. Jinan:Shandong University,2021. [73] 勾睿杰,张晓峰,张鸿滨,等. 刀具磨损对Allvac 718Plus高温合金铣削加工表面完整性及疲劳性能的影响[J]. 中国机械工程,2023,34(24):2920-2926. GOU Ruijie,ZHANG Xiaofeng,ZHANG Hongbing,et al. Effects of tool wear on the milling surface intergrity and fatigue properties of Allvac 718Plus superally[J]. China Mechani-cal Engineering,2023,34(24):2920-2926. [74] 谢晓莹,朱浩阳,张银霞. 刀具磨损对GH4169加工表面完整性的影响[J]. 钢铁,2023,58(8):195-201. XIE Xiaoying,ZHU Haoyang,ZHANG Yinxia. Influence of tool wear on machining surface intergrity of GH4169[J]. Iron and Steel,2023,58(8):195-201. [75] 沈雪红,张定华,姚倡锋,等. 钛合金切削加工表面完整性形成机制研究进展[J]. 航空材料学报,2021,41(4):1-16. SHENG Xuehong,ZHANG Dinghua,YAO Changfeng,et al. Research progress on formation mechanism of surface intergrity in titanium alloy machining[J]. Journal of Aeronautical Materials,2021,41(4):1-16. [76] WU T Y,LEI K W. Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network[J]. The International Journal of Advanced Manufacturing Technology,2019,102(1):305-314. [77] PIMENOV D Y,BUSTILLO A,MIKOLAJCZYK T. Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth[J]. Journal of Intelligent Manufacturing,2018,29(5):1045-1061. [78] WANG Z,WANG S,WANG S,et al. An intelligent process parameters determination method based on multi-algorithm fusion:a case study in five-axis milling[J]. Robotics and Computer-Integrated Manufacturing,2022,73:102244. [79] EZUGWU E O,FADARE D A,BONNEY J,et al. Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network[J]. International Journal of Machine Tool & Manufacture,2005,45(12):1375-1385. [80] ÖZEL T,KARPAT Y. Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks[J]. International Journal of Machine Tool & Manufacture,2005,45(4):467-479. [81] 陈涛. 淬硬钢GCr15精密切削过程的建模与加工表面完整性预测[D]. 哈尔滨:哈尔滨理工大学,2010. CHEN Tao. Modeling and surface integrality prediction for precision cutting of hardened steel GCr15[D]. Harbin:Harbin University of Science and Technology,2010. [82] LI X,SUN B H,GUAN B,et al. Elucidating the effect of gradient structure on strengthening mechanisms and fatigue behavior of pure titanium[J]. International Journal of Fatigue,2021,146:106142. [83] HUANG H,WANG Z,LU J,et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer[J]. Acta Materialia,2015,87:150-160. [84] HE D,LI L,ZHANG Y,et al. Gradient microstructure and fatigue properties of TC21 titanium alloy processed by laser shock peening[J]. Journal of Alloys and Compounds,2023,935:168139. [85] LIN Y,PAN J,ZHOU H F,et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel[J]. Acta Materialia,2018,153:279-289. [86] WU X L,YANG M X,YUAN F P,et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility[J]. Acta Materialia,2016,112:337-346. [87] CHENG Z,ZHOU H,LU Q,et al. Extra strengthening and work hardening in gradient nanotwinned metals[J]. Science,2018,362:(6414). [88] WANG Y F,WANG M S,FANG X T,et al. Extra strengthening in a coarse/ultrafine grained laminate:Role of gradient interfaces[J]. International Journal of Plasticity,2019,123:196-207. [89] 吴泽刚,侯永峰,苗清,等. TC11钛合金整体叶轮铣削加工表面完整性研究[J]. 中国机械工程,2023,34(23):2862-2872. WU Zegang,HOU Yongfeng,MIAO Qing,et al. Study on surface intergrity in milling of TC11 titanium impellers[J]. China Mechanical Engineering,2023,34(23):2862-2872. [90] 李军利. 镍基高温合金整体叶轮高效加工应用基础研究[D]. 上海:上海交通大学,2013. LI Junli. Fundamental study on application of high efficiency machining of nickel-based super alloy integrited impeller[D]. Shanghai:Shanghai Jiao Tong University,2013. [91] YANG Z,ZHU L,ZHANG G,et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tool & Manufacture,2020,156:103594. [92] 刘致君. 旋转超声铣削机理分析及试验研究[D]. 青岛:青岛科技大学,2022. LIU Zhijun. Analysis and experimental study on the mechanism of rotary ultrasonic milling[D]. Qingdao:Qingdao University of Science and Technology,2022. [93] 陈雪林. 高强度合金超声振动切削力-热耦合机理研究[D]. 长沙:中南大学,2022. CHENG Xuelin. An investigation on thermal-mechanical coupling mechanism in ultrasonic vibration assisted cutting of high strength alloys[D]. Changsha:Central South University,2022. [94] 陈德雄,陈金国. 钛合金超声振动辅助切削锯齿形切屑形成机理的数值分析[J]. 机械科学与技术,2022,41(2):270-277. CHEN Dexiong,CHEN Jinguo. Numerical analysis of serrated chip formation mechanism of titannium alloy in ultrasonic vibration assisted machining[J]. Mechanical Sciense and Technology for Aerospacing Engineering,2022,41(2):270-277. [95] PENG Z,ZHANG X,ZHANG D. Integration of finishing and surface treatment of Inconel 718 alloy using high-speed ultrasonic vibration cutting[J]. Surface & Coatings Technology,2021,413:127088. [96] 张翔宇,路正惠,彭振龙,等. 钛合金的高质高效超声振动切削加工[J]. 机械工程学报,2021,57(5):133-147. ZHANG Xiangyu,LU Zhenghui,PENG Zhenlong,et al. High quality and efficient ultrasonic vibration cutting of titanium alloy[J]. Journal of Mechanical Engineering,2021,57(5):133-147. [97] PENG Z,ZHANG D,ZHANG X. Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder[J]. Chinese Journal of Aeronautics,2020,33(12):3535-3549. [98] HU W,DU P,QIU X,et al. Enhanced dry machinability of TC4 titanium alloy by longitudinal-bending hybrid ultrasonic vibration-assisted milling[J]. Journal of Cleaner Production,2022,379:134866. [99] KIM D H,WOO W S,CHU W S,et al. Development of multi-axis laser-assisted milling device[C]//Proceedings of the International Manufacturing Science and Engineering Conference,F,2017. American Society of Mechanical Engineers. [100] ISMAIL M,SHAH I,IBRAHIM M,et al. Study on laser assisted micro milling (LAMM) processing characteristic of titanium alloy (Ti6Al4V) using TiAlN coated carbide micro ball mill[C]//9th International Conference on MicroManufacturing (ICOMM 2014). [101] 梁铭. 基于切屑形貌的TC4激光辅助微铣削材料去除机理研究[D]. 哈尔滨:哈尔滨工业大学,2020. LIANG Ming. Material removal mechanism of laser-assisted micro-milling TC4 based on chip mophology[D]. Harbin:Harbin Institute of Technology,2020. [102] 黄波涛. GH4169高温合金电塑性辅助铣削实验研究[D]. 南昌:南昌科技大学,2021. HUANG Botao. Experimental research on electroplastic milling of GH4169 superally[D]. Nanchang:Nanchang HangKong University,2021. [103] 杜强. 激光辅助高速精密微切削装置设计与实验研究[D]. 长春:长春理工大学,2019. DU Qiang. Design and experimental study of laser assisted high speed precision mecro cutting device[D]. Changchun:Changchun University of Science and Technology,2019. [104] 徐哲. 高温合金激光辅助微切削技术研究[D]. 长春:长春理工大学,2018. XU Zhe. Research on laser assisted mecro cutting technology for high-temperature alloy[D]. Changchun:Changchun University of Science and Technology,2018. [105] XU D,LIAO Z,AXINTE D,et al. Investigation of surface integrity in laser-assisted machining of nickel based superalloy[J]. Material Design,2020,194:108851. [106] 姚亚飞. 通电加热辅助切削及其过程监测[D]. 厦门:厦门大学,2019. YAO Yafei. Electrical heating assisted cutting and process monitoring[D]. Xiamen:Xiamen University,2019. [107] 吴林涛. 通电加热铣削技术及其过程监测研究[D]. 厦门:厦门大学,2014. WU Lintao. Electric hot milling and its process monitoring[D]. Xiamen:Xiamen University,2014. [108] YIN X,ZHAO S,LIU Y,et al. Evaluation of profile accuracy and surface integrity for Inconel 718 blade machined by ultrasonic peening milling[J]. Journal of Manufacturing Processes,2023,104:150-163. [109] WOO W S,LEE C M. Laser-Assisted milling of turbine blade using five-axis hybrid machine tool with laser module[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2021,8(3):783-793. [110] REHBINDER P. New physico-chemical phenomena in the deformation and mechanical treatment of solids[J]. Nature,1947,159(4052):866-867. [111] 陈哲铭,孙剑飞,朱卫东,等. 置氢对TA15钛合金的变形及切削机理影响[J]. 航空制造技术,2022,65(Z1):106-112. CHENG Zheming,SUN Jianfei,ZHU Weidong,et al. Effect of hydrogenation on deformation and cutting mechanism of TA15 titanium alloy[J]. Aeronautical Manufacturing Technology,2022,65 (Z1):106-112. [112] 危卫华,徐九华,傅玉灿,等. 置氢钛合金TC4的切削加工性研究[J]. 南京航空航天大学学报,2009,41(5):633-638. WEI Weihua,XU Jiuhua,FU Yucan,et al. Machinability of hydrogenation titannium alloy TC4[J]. Journal of Nanjing University of Aeronautics and Astronautics,2009,41(5):633-638. [113] LIU W,HAN H,REN C,et al. First-principles study of intergranular embrittlement induced by Te in the Ni Σ 5 grain boundary[J]. Computational Materials Science,2014,88:22-27. [114] LI G,LIU Z,WANG B,et al. Effect of element Te on alterations of microstructure and mechanical property of nickel-based superalloy Inconel 718 through alloy infiltration[J]. Applied Surface Science,2021,544:148730. [115] LI G,LIU Z,WANG B,et al. Effect of oxygen on Te infiltration into superalloy Inconel 718 at elevated temperature[J]. Surface & Coatings Technology,2021,415:127126. [116] LI G,LIU Z,WANG B. Microstructural characteristics,deformation behavior and mechanical properties of Inconel 718 treated by Te infiltration[J]. Journal of Alloys and Compounds,2022,892:162211. [117] ERLEBACHER J,AZIZ M J,KARMA A,et al. Evolution of nanoporosity in dealloying[J]. Nature,2001,410(6827):450-453. [118] 李康宁. 球头铣削表面形貌特征及其减阻性能研究[D]. 哈尔滨:哈尔滨理工大学,2023. LI Kangning. Study on surface topography charasteristics and drag raduction performance of ball end milling[D]. Harbin:Harbin University of Science and Technology,2023. [119] 张磊. 基于仿生学的铣削表面结构优选与性能分析[D]. 哈尔滨:哈尔滨理工大学,2020. ZHANG Lei. Structural optimization and performance analysis of milling surface based on bionics[D]. Harbin:Harbin University of Science and Technology,2020. [120] 崔有正. 球头铣削仿生表面磨损与抗疲劳性能研究[D]. 哈尔滨:哈尔滨理工大学,2021. CUI Youzheng. Research on bionic surface wear and fatigue resistance of ball end milling[D]. Harbin:Harbin University of Science and Technology,2021. [121] 冯仁义. 椭球头铣刀铣削表面形貌的建模及其减阻特性分析[D]. 哈尔滨:哈尔滨理工大学,2022. FENG Renyi. Modeling of milling surface topography of ellipsoidal head milling cutter and analysisof drag reduction characteristies[D]. Harbin:Harbin University of Science and Technology,2022. [122] 白利娟,张建华,陶国灿,等. 振动辅助铣削加工仿生表面研究[J]. 中国机械工程,2016,27(9):1229-1233,1242. BAI Lijuan,ZHANG Jianhua,TAO Guocan,et al. Vibration assisted milling for bionic surface manufacturing[J]. China Mechanical Engineering,2016,27(9):1299-1233,1242. [123] HIOKI D,DINIZ A E,SINATORA A. Influence of HSM cutting parameters on the surface integrity characteristics of hardened AISI H13 steel[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2013,35(4):537-553. [124] HUANG W,ZHANG P,YANG T,et al. Tool path selection for high-speed ball-end milling process of hardened AISI D2 steel based on fatigue resistance[J]. The International Journal of Advanced Manufacturing Technology,2020,110:2239-2247. [125] YAO C F,WU D X,JIN Q C,et al. Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy[J]. Transactions of Nonferrous Metals Society of China,2013,23(3):650-660. [126] YANG D,LIU Z,XIAO X,et al. The effects of machining-induced surface topography on fatigue performance of titanium alloy Ti-6Al-4V[J]. Procedia CIRP,2018,71:27-30. [127] PEREZ I,MADARIAGA A,ARRAZOLA P J,et al. An analytical approach to calculate stress concentration factors of machined surfaces[J]. International Journal of Mechanical Sciences,2021,190:106040. [128] 王龙,陆华伟,郭爽,等. 凹坑排列方式对高负荷扩压叶栅的影响[J]. 工程热物理学报,2020,41(11):2677-2686. WANG Long,LU Huawei,GUO Shuang,et al. Infuence of arrangement of dimples on highly loaded compressor cascade[J]. Journal of Engineering Thermophysics,2020,41(11):2677-2686. [129] 杨志杰. 人字形微沟槽控制压气机叶型损失机理研究[D]. 大连:大连海事大学,2023. YANG Zhijie. Study on influence of herringbone micro-grooves on profile lossof compressor cascades[D]. Dalian:Dalian Maritime University,2023. [130] 周一帆. 表面微沟槽对压气机叶栅气动性能的影响[D]. 北京:中国科学院大学(中国科学院工程热物理研究所),2022. ZHOU Yifan. Effects of microsurface riblets on aerodynamic performance of compressor cascade[D]. Beijing:The Insti-tute of Engineering Thermophysics,Chinese Academy of Sciences,2022. |
[1] | 王晨光, 王海航, 杨杰, 凡志磊, 周恩涛, 葛恩德, 安庆龙, 陈明. 孔挤压量对碳纤维增强复合材料孔壁损伤与疲劳性能的影响[J]. 机械工程学报, 2025, 61(7): 134-143. |
[2] | 党嘉强, 安庆龙, 李宇罡, 明伟伟, 王浩伟, 刘忠明, 陈明. 航空齿轮齿根磨削和超声滚压表面完整性分布规律研究[J]. 机械工程学报, 2025, 61(5): 343-353. |
[3] | 隗雨欣, 宋洪侠, 张园, 薛冠鸣, 康仁科, 鲍岩, 董志刚. 超声辅助钻削1J22软磁合金表面完整性研究[J]. 机械工程学报, 2025, 61(1): 345-359. |
[4] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[5] | 何喆, 黄新春, 宋艺辉, 史耀耀, 张兆顷, 史恺宁. 服役温度影响的DD6单晶高温合金磨削/喷丸加工表面完整性演化规律研究[J]. 机械工程学报, 2024, 60(9): 410-420. |
[6] | 王湃, 白翌帆, 赵文祥, 张毅博, 刘志兵. 高温合金短电弧辅助铣削表面完整性演化研究[J]. 机械工程学报, 2024, 60(9): 434-444. |
[7] | 吴吉展, 魏沛堂, 吴少杰, 刘怀举, 朱才朝. 航空齿轮钢滚动接触疲劳性能预测与表面完整性优化[J]. 机械工程学报, 2024, 60(8): 81-93. |
[8] | 丁文锋, 赵俊帅, 张洪港, 赵彪, 司文元, 宋强, 黄庆飞. 齿轮高效精密磨削加工及表面完整性控制技术研究进展[J]. 机械工程学报, 2024, 60(7): 350-373. |
[9] | 吴吉展, 魏沛堂, 刘怀举, 吴少杰, 朱才朝. 航空齿轮钢表面完整性与滚动接触疲劳性能关联规律研究[J]. 机械工程学报, 2024, 60(4): 284-295. |
[10] | 刘怀举, 陈地发, 朱才朝, 吴吉展, 魏沛堂. 齿轮弯曲疲劳的研究进展与发展趋势[J]. 机械工程学报, 2024, 60(3): 83-108. |
[11] | 申志康, 王波, 杨益, 管月辉, 周平, 侯文涛, 朴钟宇, 刘小超, 黄国强, 杨夏炜, 陈海燕, 田艳红, 李文亚, 李会军. 铝/钢搅拌摩擦钎焊连接机理及疲劳性能研究[J]. 机械工程学报, 2024, 60(22): 130-138. |
[12] | 李少川, 肖贵坚, 曹华军, 汪迎新, 赵泽勇, 卓晓琴, 黄云. 基于相位调控的二维超声辅助砂带磨削方法及其对GH4169表面完整性研究[J]. 机械工程学报, 2024, 60(21): 349-364. |
[13] | 李泽坤, 梁志强, 蔡志海, 李学志, 栾晓圣, 邹世坤, 李宏伟, 刘心藜, 李娟, 王飞. 超高强度钢激光冲击-超声滚压复合强化试验研究[J]. 机械工程学报, 2024, 60(21): 378-386. |
[14] | 赵德望, 姜超, 赵延广, 杨文平, 樊俊铃. 铝锂合金疲劳性能及预测研究-基于试验和“浅层”+“深度”混合神经网络方法[J]. 机械工程学报, 2024, 60(16): 190-199. |
[15] | 张吉银, 姚倡锋, 谭靓, 崔敏超, 周征, 孙蕴齐, 李国喜, 樊怡. 喷丸强化残余应力对疲劳性能和变形控制影响研究进展[J]. 机械工程学报, 2023, 59(6): 46-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||