机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 1-22.doi: 10.3901/JME.2025.09.001
• 特邀专栏:高性能制造 •
崔线线, 杜晗恒, 陈华伟
收稿日期:
2024-05-22
修回日期:
2024-12-11
发布日期:
2025-06-12
通讯作者:
陈华伟,男,1975年出生,博士,教授,博士研究生导师。主要研究方向为微纳仿生表面制造、界面微流体行为理论、柔性电子制造及其微纳制造装备。E-mail:chenhw75@buaa.edu.cn
E-mail:chenhw75@buaa.edu.cn
作者简介:
崔线线,女,1993年出生,博士研究生。主要研究方向为仿生多功能表面。E-mail:falrcui@163.com;杜晗恒,男,1990年出生,博士,副教授,博士研究生导师。主要研究方向为微纳结构超精密加工及其功能性应用。E-mail:duhanheng@buaa.edu.cn
基金资助:
CUI Xianxian, DU Hanheng, CHEN Huawei
Received:
2024-05-22
Revised:
2024-12-11
Published:
2025-06-12
摘要: 减阻表面在航空、航天、航海等众多领域因发挥着减少能耗的重要作用而受到越来越多的关注,如何实现高效减阻具有重要意义。自然界中的动植物经过上亿年的自然选择形成了许多具有低阻特性的表皮结构,模仿鲨鱼等低阻生物制备的仿生微纳结构表面为高效减阻提供了新思路。本综述系统总结了仿生微纳结构减阻表面的研究进展,梳理了鲨鱼和其他鱼类启发的减阻表面的形貌特征及减阻机制,阐述了高能束流加工技术、表面刻蚀加工技术、超精密机械加工技术、3D打印技术、生物复制成形技术等减阻表面的制造技术,并简述了现有仿生减阻表面在航天、体育赛事、管道输送等方面的实际应用情况。最后,基于研究进展、制造技术和实际应用的分析,总结了仿生微纳结构减阻表面的突出优势,并凝练了仿生微纳结构减阻表面制造技术所面临的现状和挑战。
中图分类号:
崔线线, 杜晗恒, 陈华伟. 仿生微纳结构减阻表面及其制造技术研究综述[J]. 机械工程学报, 2025, 61(9): 1-22.
CUI Xianxian, DU Hanheng, CHEN Huawei. Review on Biomimetic Micro/nanostructured Surfaces and Their Manufacturing Techniques for Drag Reduction[J]. Journal of Mechanical Engineering, 2025, 61(9): 1-22.
[1] 柯贵喜,潘光,黄桥高,等. 水下减阻技术研究综述[J]. 力学进展,2009,39(5):546-554. KE Guixi,PAN Guang,HUANG Qiaogao,et al. Reviews of underwater drag reduction technology[J]. Advances in Mechanics,2009,39(5):546-554. [2] LIU G,YUAN Z,QIU Z,et al. A brief review of bio-inspired surface technology and application toward underwater drag reduction[J]. Ocean Engineering,2020,199:1-9. [3] 陈登科,崔线线,苏琳,等. 仿鱼类表皮减阻研究现状与进展[J]. 中国表面工程,2023,36(5):14-36. CHEN Dengke,CUI Xianxian,SU Lin,et al. Research progress and development trends of drag reduction inspired fish skin[J]. China Surface Engineering,2023,36(5):14-36. [4] CUI X,CHEN D,CHEN H. Multistage gradient bioinspired riblets for synergistic drag reduction and efficient antifouling[J]. ACS Omega,2023,8(9):8569-8581. [5] CHEN D,CUI X,LIU X,et al. Bionic gradient flexible fish skin acts as a passive dynamic micro- roughness to drag reduction[J]. Surface and Coatings Technology,2023,457:1-18. [6] FENG X,FAN D,TIAN G,et al. Coupled bionic drag-reducing surface covered by conical protrusions and elastic layer inspired from pufferfish skin[J]. ACS Applied Materials & Interfaces,2022,14(28):32747-32760. [7] GU Y,LIU T,MU J,et al. Analysis of drag reduction methods and mechanisms of turbulent[J]. Applied Bionics and Biomechanics,2017,2017:1-8. [8] 刘明杰,吴青山,严昊,等. 仿生减阻表面的进展与挑战[J]. 北京航空航天大学学报,2022,48(9):1782-1790. LIU Mingjie,WU Qingshan,YAN Hao,et al. Progress and challenges of bionic drag reduction surfaces[J]. Journal of Beijing University of Aeronautics Astronautics,2022,48(9):1782-1790. [9] MUTHURAMALINGAM M,PUCKERT D K,RIST U,et al. Transition delay using biomimetic fish scale arrays[J]. Scientific Reports,2020,10:14534. [10] BOOMSMA A,SOTIROPOULOS F. Direct numerical simulation of sharkskin denticles in turbulent channel flow[J]. Physics of Fluids,2016,28(3):1-19. [11] CHEN D,CUI X,CHEN H. Dual-composite drag-reduction surface based on the multilayered structure and mechanical properties of tuna skin[J]. Microscopy Research and Technique,2021,84(8):1862-1872. [12] LUO Y,SONG W,WANG X. Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research[J]. Micron,2016,82:9-16. [13] LEE S J,LEE S H. Flow field analysis of a turbulent boundary layer over a riblet surface[J]. Experiments in Fluids,2001,30(2):153-166. [14] BOTTARO A. Flow over natural or engineered surfaces:An adjoint homogenization perspective[J]. Journal of Fluid Mechanics,2019,877:1-91. [15] WEN L,WEAVER J C,LAUDER G V. Biomimetic shark skin:Design,fabrication and hydrodynamic function[J]. Journal of Experimental Biology,2014,217(10):1656-1666. [16] ZHOU M,ZHANG L,ZHONG L,et al. Robust photothermal icephobic surface with mechanical durability of multi-bioinspired structures[J]. Advanced materials,2023,36(3):1-24. [17] WU L,JIAO Z,SONG Y,et al. Water-trapping and drag-reduction effects of fish Ctenopharyngodon idellus scales and their simulations[J]. Science China Technological Sciences,2017,60(7):1111-1117. [18] DU H,WU C,LI D,et al. Feasibility study on ultraprecision micro-milling of the additively manufactured NiTi alloy for generating microstructure arrays[J]. Journal of Materials Research and Technology,2023,25:55-67. [19] IBRAHIM M D,AMRAN S N A,YUNOS Y S,et al. The study of drag reduction on ships inspired by simplified shark skin imitation[J]. Applied Bionics and Biomechanics,2018,2018:1-11. [20] 张成春,任露泉,王晶,等. 旋成体仿生凹坑表面流场控制减阻仿真分析[J]. 兵工学报,2009,30(8):1066-1072. ZHANG Chengchun,REN Luquan,WANG Jing,et al. Simulation on flow control for drag reduction of revolution body using bionic dimpled surface[J]. Acta Armamentarii,2009,30(8):1066-1072. [21] DOU Z,WANG J,CHEN D. Bionic research on fish scales for drag reduction[J]. Journal of Bionic Engineering,2012,9(4):457-464. [22] DILLON E M,NORRIS R D,O'DEA A. Dermal denticles as a tool to reconstruct shark communities[J]. Marine Ecology Progress Series,2017,566:117-134. [23] DU Z,LI H,CAO Y,et al. Control of flow separation using biomimetic shark scales with fixed tilt angles[J]. Experiments in Fluids,2022,63(10):1-12. [24] MUTHURAMALINGAM M,VILLEMIN L S,BRUECKER C. Streak formation in flow over biomimetic fish scale arrays[J]. Journal of Experimental Biology,2019,222(16):1-16. [25] BECHERT D,REIF W. On the drag reduction of the shark skin[C]//Proceedings of the 23rd Aerospace Sciences Meeting. Reno:AIAA,1985. [26] CHEN D,LIU X,CUI X,et al. Research progress and development trend of the drag reduction inspired by fish skin[J]. Progress in Organic Coatings,2023,182:1-18. [27] TIAN G,ZHANG Y,FENG X,et al. Focus on bioinspired textured surfaces toward fluid drag Reduction:Recent progresses and challenges[J]. Advanced Engineering Materials,2021,24(1):1-25. [28] MIYAZAKI M,HIRAI Y,MORIYA H,et al. Biomimetic riblets inspired by sharkskin denticles:Digitizing,modeling and flow simulation[J]. Journal of Bionic Engineering,2018,15(6):999-1011. [29] CHAO L,CAO Y,PAN G. A review of underwater bio-mimetic propulsion:Cruise and fast-start[J]. Fluid Dynamics Research,2017,49(4):1-17. [30] LANG A W,BRADSHAW M T,SMITH J A,et al. Movable shark scales act as a passive dynamic micro- roughness to control flow separation[J]. Bioinspiration & Biomimetics,2014,9(3):1-10. [31] SANTOS L M,LANG A,WAHIDI R,et al. Passive separation control of shortfin mako shark skin in a turbulent boundary layer[J]. Experimental Thermal and Fluid Science,2021,128:1-13. [32] BIXLER G D,BHUSHAN B. Shark skin inspired low- drag microstructured surfaces in closed channel flow[J]. Journal of Colloid and Interface Science,2013,393:384-396. [33] BIXLER G D,BHUSHAN B. Fluid drag reduction with shark-skin riblet inspired microstructured surfaces[J]. Advanced Functional Materials,2013,23(36):4507- 4528. [34] BECHERT D W,BRUSE M,HAGE W,et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics,1997,338:59-87. [35] BECHERT D W,BRUSE M,HAGE W. Experiments with three-dimensional riblets as an idealized model of shark skin[J]. Experiments in Fluids,2000,28(5):403-412. [36] MARTIN S,BHUSHAN B. Fluid flow analysis of a shark-inspired microstructure[J]. Journal of Fluid Mechanics,2014,756:5-29. [37] ZHANG D,LI Y,HAN X,et al. High-precision bio-replication of synthetic drag reduction shark skin[J]. Chinese Science Bulletin,2011,56(9):938-944. [38] BOOMSMA A,SOTIROPOULOS F. Riblet drag reduction in mild adverse pressure gradients:A numerical investigation[J]. International Journal of Heat and Fluid Flow,2015,56:251-260. [39] JUNG Y C,BHUSHAN B. Biomimetic structures for fluid drag reduction in laminar and turbulent flows[J]. Journal of Physics Condensed Matter,2010,22(3):1-9. [40] WEST N,SAMMUT K,TANG Y. Material selection and manufacturing of riblets for drag reduction:An updated review[J]. Proceedings of the Institution of Mechanical Engineers,Part L:Journal of Materials:Design and Applications,2016,232(7):610-622. [41] WEN L,WEAVER J C,LAUDER G V. Biomimetic shark skin:Design,fabrication and hydrodynamic function[J]. Journal of Experimental Biology,2014,217(10):1656-1666. [42] HAN X,ZHANG D,LI X,et al. Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin[J]. Science Bulletin,2008,53(10):1587-1592. [43] GARCIA-MAYORAL R,JIMENEZ J. Drag reduction by riblets[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences,2011,369(1940):1412-1427. [44] BAI H,GONG J,LU Z. Energetic structures in the turbulent boundary layer over a spanwise-heterogeneous converging/diverging riblets wall[J]. Physics of Fluids,2021,33(7). [45] PERLIN M,DOWLING D R,CECCIO S L. Freeman scholar review:Passive and active skin-friction drag reduction in turbulent boundary layers[J]. Journal of Fluids Engineering,2016,138(9):1-16. [46] QUINTAVALLA S J,ANGILELLA A J,SMITS A J. Drag reduction on grooved cylinders in the critical Reynolds number regime[J]. Experimental Thermal and Fluid Science,2013,48:15-18. [47] DUNDAR ARISOY F,KOLEWE K W,HOMYAK B,et al. Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography[J]. ACS Applied Materials & Interfaces,2018,10(23):20055-20063. [48] DOMEL A G,DOMEL G,WEAVER J C,et al. Hydrodynamic properties of biomimetic shark skin:Effect of denticle size and swimming speed[J]. Bioinspiration& Biomimetics,2018,13(5):1-15. [49] DEUTSCH S,FONTAINE A A,MOENY M J,et al. Combined polymer and microbubble drag reduction on a large flat plate[J]. Journal of Fluid Mechanics,2006,556:309-327. [50] DAI W,ALKAHTANI M,HEMMER P R,et al. Drag-reduction of 3D printed shark-skin-like surfaces[J]. Friction,2018,7(6):603-612. [51] HUANG C,WANG Q,WEI J,et al. Direct numerical simulation of turbulent flow over wide-rib rectangular grooves[J]. The Canadian Journal of Chemical Engineering,2018,96(5):1207-1220. [52] 张子良. 仿鲨鱼二维肋条湍流减阻机理与模化研究[D]. 北京:中国科学院工程热物理研究所,2020. ZHANG Ziliang. Drag reduction mechanism and modeling strategy of two-dimensional shark-skin-inspired riblets in turbulent flows[D]. Beijing:Institute of Engineering Thermophysics,Chinese Academy of Sciences,2020. [53] SUN T,DING Y,HUANG H,et al. Numerical study on the effects of modulated ventilation on unsteady cavity dynamics and noise patterns[J]. Physics of Fluids,2021,33(12):1-20. [54] DAEIAN M A,MOOSAVI A,NOURI-BORUJERDI A,et al. Drag reduction in a channel with microstructure grooves using the lattice Boltzmann method[J]. Journal of Physics D:Applied Physics,2017,50(10):1-10. [55] OEFFNER J,LAUDER G V. The hydrodynamic function of shark skin and two biomimetic applications[J]. Journal of Experimental Biology,2012,215(5):785-795. [56] 崔桂香. 基于近壁相干结构的湍流减阻主动控制研究[D]. 北京:清华大学,2011. CUI Guixiang. Study on active control of turbulence for drag reduction based on near-wall coherent structures[D]. Beijing:Tsinghua University,2011. [57] YANG S,LI S,TIAN H,et al. Tomographic PIV investigation on coherent vortex structures over shark- skin-inspired drag-reducing riblets[J]. Acta Mechanica Sinica,2015,32(2):284-294. [58] MARTIN S,BHUSHAN B. Modeling and optimization of shark-inspired riblet geometries for low drag applications[J]. Journal of Colloid and Interface Science,2016,474:206-215. [59] MARTIN S,BHUSHAN B. Fluid flow analysis of continuous and segmented riblet structures[J]. RSC Advances,2016,6(13):10962-10978. [60] LIU W,NI H,WANG P,et al. An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves[J]. Beilstein Journal of Nanotechnology,2020,11:24-40. [61] LI L,ZHU J,LI J,et al. Effect of vortex frictional drag reduction on ordered microstructures[J]. Surface Topography:Metrology and Properties,2019,7(2):1-10. [62] LAUDER G V,WAINWRIGHT D K,DOMEL A G,et al. Structure,biomimetics,and fluid dynamics of fish skin surfaces[J]. Physical Review Fluids,2016,1(6):1-18. [63] TIAN G,FAN D,FENG X,et al. Thriving artificial underwater drag-reduction materials inspired from aquatic animals:Progresses and challenges[J]. RSC Advances,2021,11(6):3399-3428. [64] GABLER-SMITH M K,LAUDER G V. Ridges and riblets:Shark skin surfaces versus biomimetic models[J]. Frontiers in Marine Science,2022,9:1-8. [65] HUANG C,LIU D,WEI J. Experimental study on drag reduction performance of surfactant flow in longitudinal grooved channels[J]. Chemical Engineering Science,2016,152:267-279. [66] MOTTA P,HABEGGER M L,LANG A,et al. Scale morphology and flexibility in the shortfin mako Isurus oxyrinchus and the blacktip shark Carcharhinus limbatus[J]. Journal of Morphology,2012,273(10):1096-1110. [67] ARUNVINTHAN S,RAATAN V S,NADARAJA PILLAI S,et al. Aerodynamic characteristics of shark scale-based vortex generators upon symmetrical airfoil[J]. Energies,2021,14(7):1-22. [68] DOMEL A G,SAADAT M,WEAVER J C,et al. Shark skin-inspired designs that improve aerodynamic performance[J]. Journal of the Royal Society Interface,2018,15(139):1-9. [69] FELD K,KOLBORG A N,NYBORG C M,et al. Dermal denticles of three slowly swimming shark species:Microscopy and flow visualization[J]. Biomimetics,2019,4(2):1-20. [70] AFROZ F,LANG A,HABEGGER M L,et al. Experimental study of laminar and turbulent boundary layer separation control of shark skin[J]. Bioinspiration & Biomimetics,2016,12(1):1-18. [71] DU CLOS K T,LANG A,DEVEY S,et al. Passive bristling of mako shark scales in reversing flows[J]. Journal of the Royal Society Interface,2018,15(147):1-11. [72] AKBARZADEH A M,BORAZJANI I. Reducing flow separation of an inclined plate via travelling waves[J]. Journal of Fluid Mechanics,2019,880:831-863. [73] MAO Q,WANG P,HE C,et al. Unsteady flow structures behind a shark denticle replica on the wall:Time-resolved particle image velocimetry measurements[J]. Physics of Fluids,2021,33(7):1-13. [74] WEN L,WEAVER J C,THORNYCROFT P J,et al. Hydrodynamic function of biomimetic shark skin:Effect of denticle pattern and spacing[J]. Bioinspiration & Biomimetics,2015,10(6):1-13. [75] LI S,LIU S,CUI J,et al. Co-simulation of drag reduction of placoid scale oscillation driven by micro Stewart mechanism[J]. Physics of Fluids,2024,36(2):1-15. [76] QUICAZAN-RUBIO E M,VAN LEEUWEN J L,VAN MANEN K,et al. Coasting in live-bearing fish:The drag penalty of being pregnant[J]. Journal of the Royal Society Interface,2019,16(151):1-10. [77] LANG A W,JONES E M,AFROZ F. Separation control over a grooved surface inspired by dolphin skin[J]. Bioinspiration & Biomimetics,2017,12(2):1-13. [78] WAINWRIGHT D K,LAUDER G,WEAVER J C. Imaging biological surface topography in situ and in vivo[J]. Methods in Ecology and Evolution,2017,8(11):1626-1638. [79] DRELICH A J,MONTEIRO S N,BROOKINS J,et al. Fish skin:A Natural Inspiration for Innovation[J]. Advanced Biosystems,2018,2(7):1-15. [80] CHEN D,CHEN H,CUI X. Dual-coupling drag reduction inspired by tuna skin:Fan-shaped imbricated fish scale composited with flexible coating[J]. AIP Advances,2022,12(3):1-11. [81] WU L,JIAO Z,SONG Y,et al. Experimental investigations on drag-reduction characteristics of bionic surface with water-trapping microstructures of fish scales[J]. Scientific Reports,2018,8(1):1-8. [82] FAN D,FENG X,TIAN G,et al. Experimental investigations of the turbulent boundary layer for biomimetic protrusive surfaces inspired by pufferfish skin:Effects of spinal density and diameter[J]. Langmuir,2021,37(40):11804-11817. [83] ZHANG Y,FENG X,TIAN G,et al. Rheological properties and drag reduction performance of puffer epidermal mucus[J]. ACS Biomaterials Science & Engineering,2022,8(2):460-469. [84] ZHOU H,ZHU Y,TIAN G,et al. Experimental investigations of the turbulent boundary layer for biomimetic surface with spine-covered protrusion inspired by pufferfish skin[J]. Arabian Journal for Science and Engineering,2021,46(3):2865-2875. [85] SAGONG W,KIM C,CHOI S,et al. Does the sailfish skin reduce the skin friction like the shark skin[J]. Physics of Fluids,2008,20(10):1-10. [86] SAGONG W,JEON W P,CHOI H. Hydrodynamic characteristics of the sailfish (Istiophorus platypterus) and swordfish (Xiphias gladius) in gliding postures at their cruise speeds[J]. Plos One,2013,8(12):1-14. [87] 赵海森. 面向增减材料制造的几何研究与应用[D].济南:山东大学,2018. ZHAO Haisen. Geometric research and application on additive and subtractive manufacturing[D]. Jinan:Shandong University,2018. [88] GUO Y,ZHAO H. Femtosecond laser processed superhydrophobic surface[J]. Journal of Manufacturing Processes,2024,109:250-287. [89] LIAO K,WANG W,MEI X,et al. Stable and drag-reducing superhydrophobic silica glass microchannel prepared by femtosecond laser processing:Design,fabrication,and properties[J]. Materials & Design,2023,225:1-15. [90] RONG W,ZHANG H,ZHANG T,et al. Drag reduction using lubricant-impregnated anisotropic slippery surfaces inspired by bionic fish scale surfaces containing micro/nanostructured arrays[J]. Advanced Engineering Materials,2020,23(1). [91] WANG Y,ZHANG Z,XU J,et al. One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface[J]. Surface and Coatings Technology,2021,409:1-15. [92] ŽEMAITIS A,MIKŠYS J,GAIDYS M,et al. High- efficiency laser fabrication of drag reducing riblet surfaces on pre-heated Teflon[J]. Materials Research Express,2019,6(6):1-8. [93] LI K,FU P,TANG D,et al. Electron beam processed surface textures on titanium alloys for fluid-drag reduction[J]. The International Journal of Advanced Manufacturing Technology,2018,96(5):1553-1562. [94] LI P,CHEN S,DAI H,et al. Recent advances in focused ion beam nanofabrication for nanostructures and devices:fundamentals and applications[J]. Nanoscale,2021,13(3):1529-1565. [95] MARCHETTO D,ROTA A,CALABRI L,et al. AFM investigation of tribological properties of nano-patterned silicon surface[J]. Wear,2008,265(5):577-582. [96] CHEN Q,CAI Y,LIU Z,et al. Mechanism of laser- chemical process to remove of oxide layer and formation of periodic microstructures for drag reduction[J]. Surfaces and Interfaces,2022,35:1-9. [97] TAGHVAEI E,MOOSAVI A,NOURI-BORUJERDI A,et al. Superhydrophobic surfaces with a dual-layer micro-and nanoparticle coating for drag reduction[J]. Energy,2017,125:1-10. [98] TUO Y,ZHANG H,RONG W,et al. Drag reduction of anisotropic superhydrophobic surfaces prepared by laser etching[J]. Langmuir,2019,35(34):11016- 11022. [99] RONG W,ZHANG H,MAO Z,et al. Improved stable drag reduction of controllable laser-patterned superwetting surfaces containing bioinspired micro/nanostructured arrays[J]. ACS Omega,2022,7(2):2049-2063. [100] ZHOU Z,YAN Z,ZHANG K,et al. Bioinspired drag reduction surfaces via triple lithography method based on three-layer hybrid masks[J]. Journal of Micromechanics and Microengineering,2022,32(5):1-9. [101] ZHOU Z,WANG S,YAN Z,et al. Low air drag surface via multilayer hierarchical riblets[J]. ACS Applied Materials & Interfaces,2021,13:53155- 53161. [102] DU H,YIP W,ZHU Z,et al. Development of a two-degree-of-freedom vibration generator for fabricating optical microstructure arrays[J]. Optics Express,2021,29(16):25903-25921. [103] DU H,JIANG M,ZHU Z,et al. Ultraprecision tool- servo cutting of pure nickel for fabricating micro/nanostructure arrays[J]. Materials & Design,2022,221:1-11. [104] DU H,ZHU Z,WANG Z,et al. Fabrication of high-aspect-ratio and hierarchical micro/nanostructure arrays by a novel piezoelectrically actuated cutting system[J]. Materials & Design,2023,226:1-11. [105] ZHANG Y,ZHANG Q,ZHAO J,et al. Ultrasonic vibration assisted milling of titanium alloy microchannel[J]. Precision Engineering,2024,88:251-265. [106] DU H,WANG Y,LI Y,et al. Improving the machinability of the high-entropy alloy CoCrFeMnNi by in-situ laser-assisted diamond turning[J]. Journal of Materials Research and Technology,2023,27:7110-7118. [107] ZHANG Z,LIU W,CHEN X,et al. Generation mechanism of surface micro-texture in axial ultrasonic vibration-assisted milling (AUVAM)[J]. The International Journal of Advanced Manufacturing Technology,2022,122(3):1651-1667. [108] HAN X,ZHANG D. Study on the micro-replication of shark skin[J]. Science in China Series E:Technological Sciences,2008,51(7):890-896. [109] CHEN H,ZHANG X,ZHANG D,et al. Large-scale equal-proportional amplification bio-replication of shark skin based on solvent-swelling PDMS[J]. Journal of Applied Polymer Science,2013,130(4):2383-2389. [110] CHEN H,ZHANG X,MA L,et al. Investigation on large-area fabrication of vivid shark skin with superior surface functions[J]. Applied Surface Science,2014,316:124-131. [111] CHEN H,ZHANG X,CHE D,et al. Synthetic effect of vivid shark skin and polymer additive on drag reduction reinforcement[J]. Advances in Mechanical Engineering,2015,6:1-8. [112] LIU Y,GU H,JIA Y,et al. Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic,self-healing and drag reduction properties via replication of shark skin and SI-ATRP[J]. Chemical Engineering Journal,2019,356:318-328. [113] 付跃刚,欧阳名钊,吴锦双. 基于"蛾眼"灵感的抗反射微纳结构表面技术[J]. 飞控与探测,2018,2:1-10. FU Yuegang,OUYANG Mingzhao,WU Jinshuang. Anti-reflective micro-nano surface technology based on "moth eye" inspiration[J]. Flight Control & Detection,2018,1(2):1-10. [114] GUO C,TIAN Q,WANG H,et al. Roller embossing process for the replication of shark-skin-inspired micro- riblets[J]. Micro & Nano Letters,2017,12(7):439-444. [115] YOO K J,MOON I Y,LEE H W,et al. Evaluation of air layer behavior on patterned PTFE surfaces under underwater environment conditions[J]. Journal of Mechanical Science and Technology,2021,35(2):679-687. [116] AN Q,ZHANG B,LIU G,et al. Directional droplet- actuation and fluid-resistance reduction performance on the bio-inspired shark-fin-like superhydrophobic surface[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,97:389-396. [117] QIN L,MA Z,SUN H,et al. Drag reduction and antifouling properties of non-smooth surfaces modified with ZIF-67[J]. Surface and Coatings Technology,2021,427:1-9. [118] BALL P. Engineering shark skin and other solutions[J]. Nature,1999,400(6744):2. [119] 李育斌,乔志德,王志歧. 运七飞机外表面沟纹膜减阻的实验研究[J]. 实验流体力学,1995(3):21-26. LI Yubin,QIAO Zide,WANG Zhiqi. An experimental research of drag reduction using riblets for the Y-7 airplane[J]. Aerodynamic Experimental and Measurement & Control,1995(3):21-26. [120] 李田,戴志远,刘加利,等. 中国高速列车气动减阻优化综述[J]. 交通运输工程学报,2021,21(1):59-80. LI Tian,DAI Zhiyuan,LIU Jiali,et al. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering,2021,21(1):59-80. [121] SANDERS R,RUSHALL B,TOUSSAINT H,et al. Bodysuit yourself,but first think about it[J]. Journal of Turbulence,2001,5:23-32. [122] 张琰,黄河,任露泉. 挖掘机仿生斗齿土壤切削试验与减阻机理研究[J]. 农业机械学报,2013,44(1):258-261. ZHANG Yan,HUANG He,REN Luquan. Experiment and drag reduction mechanism of bionic excavator tooth during soil cutting[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(1):258-261. [123] HAN Z,MU Z,YIN W,et al. Biomimetic multifunctional surfaces inspired from animals[J]. Advances in Colloid and Interface Science,2016,234:27-50. |
[1] | 周素霞, 巴馨悦, 王君艳, 李光, 曲直. 鳞片仿生制动盘散热性能研究[J]. 机械工程学报, 2024, 60(6): 354-362. |
[2] | 李子清, 崔长彩, 卞素标, 李慧慧, 陆静, ORIOL Arteaga, 徐西鹏. 单晶金刚石衬底超精密加工损伤层无损测量与表征[J]. 机械工程学报, 2024, 60(4): 239-249. |
[3] | 何春雷, 张建国, 王姝淇, 任成祖. 基于多波长散射光特性的铝合金超精密车削表面粗糙度测量方法研究[J]. 机械工程学报, 2023, 59(3): 308-317. |
[4] | 陈磊, 刘阳钦, 唐川, 蒋翼隆, 石鹏飞, 钱林茂. 面向超精密加工的微观材料去除机理研究进展[J]. 机械工程学报, 2023, 59(23): 229-264. |
[5] | 戴一帆, 彭小强, 薛帅, 蒋庄德. 高性能光学制造[J]. 机械工程学报, 2023, 59(21): 1-14. |
[6] | 李涛, 黄惟琦, 龙归, 杨思铄, 张建国, 肖峻峰, 许剑锋. 单晶硅的激光抛光表面形貌演化[J]. 机械工程学报, 2023, 59(21): 52-64. |
[7] | 彭小强, 李煌, 王跃明, 关朝亮, 胡皓, 赖涛, 徐超. 化学镀NiP的凸面闪耀光栅超精密切削特性研究[J]. 机械工程学报, 2023, 59(21): 121-130. |
[8] | 杨洋, 林日雄, 杜建军. 超声椭圆振动切削闪耀光栅的三维形貌建模及控制方法[J]. 机械工程学报, 2023, 59(17): 291-299. |
[9] | 高尚, 李洪钢, 康仁科, 何宜伟, 朱祥龙. 新一代半导体材料氧化镓单晶的制备方法及其超精密加工技术研究进展[J]. 机械工程学报, 2021, 57(9): 213-232. |
[10] | 王振忠, 施晨淳, 张鹏飞, 杨哲, 陈熠, 郭江. 先进光学制造技术最新进展[J]. 机械工程学报, 2021, 57(8): 23-56. |
[11] | 董晓彬, 周天丰, 贺裕鹏, 王添星, 刘朋, 赵斌, 赵文祥, 王西彬. 微纳结构飞切加工与表面结构色调控[J]. 机械工程学报, 2021, 57(19): 239-245. |
[12] | 闫继宏, 石培沛, 张新彬, 赵杰. 软体机械臂仿生机理、驱动及建模控制研究发展综述[J]. 机械工程学报, 2018, 54(15): 1-14. |
[13] | 李大伟, 戴宁, 姜晓通, 张月, 程筱胜. 仿生鲨鱼皮盾鳞的参数化三维建模技术*[J]. 机械工程学报, 2016, 52(23): 182-188. |
[14] | 李熹平, 刘傅文, 王爽, 宫宁宁, 杨华勇. 金-塑微结构注射成型仿真与试验研究*[J]. 机械工程学报, 2016, 52(22): 61-69. |
[15] | 陈增源, 李莉华, 李荣彬, 袁伟, 刘亚辉. 基于超精密复眼加工的光场成像研究*[J]. 机械工程学报, 2016, 52(17): 50-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||