• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (4): 32-43.doi: 10.3901/JME.2025.04.032

• 仪器科学与技术 • 上一篇    

扫码分享

融合灰度和深度特征的钢管表面缺陷检测方法

石杰1,2, 吴昆鹏1, 杨朝霖2, 邓能辉1, 王少聪1, 苏成1   

  1. 1. 北京科技大学国家板带生产先进装备工程技术研究中心 北京 100083;
    2. 北京科技大学高效轧制与智能制造国家工程研究中心 北京 100083
  • 收稿日期:2024-02-16 修回日期:2024-08-20 发布日期:2025-04-14
  • 作者简介:石杰,女,1990年出生,硕士,工程师。主要研究方向为图像处理,深度学习,目标检测与分割。E-mail:cindyshih1108@126.com
    吴昆鹏(通信作者),男,1992年出生,硕士,工程师。主要研究方向为机器视觉,智能制造场景中视觉检测的应用。E-mail:wkp1008@126.com
  • 基金资助:
    广西科技重大专项资助项目(AA22068080)。

Surface Defect Detection Method for Steel Pipes Based on Fusion of Gray and Depth Features

SHI Jie1,2, WU Kunpeng1, YANG Chaolin2, DENG Nenghui1, WANG Shaocong1, SU Cheng1   

  1. 1. National Engineering Research Center of Flat Rolling Equipment, University of Science and Technology Beijing, Beijing 100083;
    2. National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, University of Science and Technology Beijing, Beijing 100083
  • Received:2024-02-16 Revised:2024-08-20 Published:2025-04-14

摘要: 无缝钢管的表面缺陷检测与量化对于质量判定至关重要。然而,现有的检测方法主要依赖于灰度图像分析,缺乏对缺陷深度的综合判断,因此检测结果往往片面且不准确。为解决该问题,设计采用3D相机采集钢管表面的数据,能够同步获取到具备相同尺寸的灰度图像和点云数据,通过对点云数据的处理,可以计算出缺陷相对于基准表面的深度,并进一步量化得到伪彩色深度图像,能够直观地展示缺陷的深度信息。为了提升缺陷检测能力,在Yolov5模型的基础上添加双边网络结构,将灰度图像和伪彩色深度图像分别输入到细节分支和语义分支中提取特征,融合两分支的数据得到新的中间特征用于目标检测。试验结果表明,利用相对深度测量方法生成的伪彩色深度图像可以有效地消除抖动、扭转等情况的干扰,深度测量误差小于0.1 mm。此外,与传统的灰度图像检测模式相比,添加了双边网络结构的Yolov5模型在mAP指标上提升了4.7%,并且以108 帧/s的速率满足了实时检测的要求。最终在缺陷定性分析的基础上,通过增加深度方向维度,实现了对缺陷的定量分析,不仅提升了检测的全面性,也显著提高了检测的准确度。

关键词: 缺陷检测, 轮廓拟合, 伪彩色深度图像, Yolov5, 双边网络

Abstract: The detection and quantification of surface defects in seamless steel pipes are crucial for quality judgment. However, existing detection methods mainly rely on grayscale image analysis and lack comprehensive judgment of defect depth, resulting in one-sided and inaccurate detection results. To solve this problem, 3D cameras are used to collect data on the surface of steel pipes, which can synchronously obtain grayscale images and point cloud data with the same size. By processing the point cloud data, the depth of defects relative to the reference surface can be calculated, and further quantified to obtain pseudo color depth images, which can intuitively display the depth information of defects. In order to improve the defect detection capability, a bilateral network structure is added to the Yolov5 model, where grayscale images and pseudo color depth images are input into the detail branch and semantic branch respectively to extract features. The data from the two branches are fused to obtain new intermediate features for object detection. The experimental results show that the pseudo color depth image generated by the relative depth measurement method can effectively eliminate interference such as jitter and torsion, and the depth measurement error is less than 0.1 mm. In addition, compared with the traditional grayscale image detection mode, the Yolov5 model with the addition of a bilateral network structure improved the mAP index by 4.7% and met the real-time detection requirements at a speed of 108 fps. On the basis of qualitative analysis of defects, quantitative analysis of defects was achieved by adding depth dimension, which not only improved the comprehensiveness of detection but also significantly improved the accuracy of detection.

Key words: defect detection, contour fitting, pseudo-color depth images, Yolov5, bilateral network

中图分类号: