机械工程学报 ›› 2024, Vol. 60 ›› Issue (23): 1-20.doi: 10.3901/JME.2024.23.001
李隆球, 刘军民, 庄仁诚, 常晓丛, 周德开
收稿日期:
2024-08-28
修回日期:
2024-10-31
出版日期:
2024-12-05
发布日期:
2025-01-23
作者简介:
李隆球(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为机器人技术、微纳制造技术。E-mail:longqiuli@hit.edu.cn
基金资助:
LI Longqiu, LIU Junmin, ZHUANG Rencheng, CHANG Xiaocong, ZHOU Dekai
Received:
2024-08-28
Revised:
2024-10-31
Online:
2024-12-05
Published:
2025-01-23
摘要: 随着机器人技术在工业、医疗、服务、教育和军事等领域的广泛应用,传统的宏观机器人技术逐渐无法满足日益增长的微型化、精细化和功能高度集成化需求。微纳机器人作为机器人领域的新兴分支,因其尺寸小、推重比大、可控性好、拓展性强,成为研究的热点和前沿。通过回顾机器人技术的发展历程,详细分析了机器人发展的四个阶段和五代动力转换,并总结了机器人应具备的技术特征。在此基础上,对微纳机器人的发展历程、内涵及所处技术阶段进行了深入探讨,重点分析了从宏观机器人到微纳机器人在介质环境、驱动方式、运载方式和多功能耦合方式等技术特征的基础性改变,以及这些改变带来的技术挑战。重点从设计、制造、控制和检测四个方面,深入探讨了微纳机器人的深层次变化。最后,提出了微纳机器人技术的未来发展方向和建议。通过对这些问题的详细探讨,为未来机器人技术的发展提供了理论指导和实践基础。期望微纳机器人技术能够在更多领域实现突破,为精准医疗、环境治理、微纳制造等提供新的技术解决方案,推动社会和科技的持续进步。
中图分类号:
李隆球, 刘军民, 庄仁诚, 常晓丛, 周德开. 从机器人到微纳机器人:改变的不止是尺寸[J]. 机械工程学报, 2024, 60(23): 1-20.
LI Longqiu, LIU Junmin, ZHUANG Rencheng, CHANG Xiaocong, ZHOU Dekai. From Robot to Micro/nanorobot: Changes Not Only Dimensions[J]. Journal of Mechanical Engineering, 2024, 60(23): 1-20.
[1] JAVAID M,HALEEM A,SINGH R P,et al. Substantial capabilities of robotics in enhancing industry 4.0 implementation[J]. Cognitive Robotics,2021,1:58-75. [2] KONG M,WU P,ZHANG Y,et al. Energy-efficient scheduling model and method for assembly blocking permutation flow-shop in industrial robotics field[J]. Artificial Intelligence Review,2024,57(3):60. [3] KYRARINI M,LYGERAKIS F,RAJAVENKATANAR AYANAN A,et al. A survey of robots in healthcare[J]. Technologies,2021,9(1):8. [4] LIU X,HUANG C,ZHU H,et al. State-of-the-art elderly service robot:Environmental perception,compliance control,intention recognition,and research challenges[J]. IEEE Systems,Man,and Cybernetics Magazine,2024,10(1):2-16. [5] SHAHAB M,TAHERI A,MOKHTARI M,et al. Utilizing social virtual reality robot (V2R) for music education to children with high-functioning autism[J]. Education and Information Technologies,2022,27:819-843. [6] GANS N R,ROGERS J G. Cooperative multirobot systems for military applications[J]. Current Robotics Reports,2021,2:105-111. [7] LIU L,GUO F,ZOU Z,et al. Application,development and future opportunities of collaborative robots (cobots) in manufacturing:A literature review[J]. International Journal of Human–Computer Interaction,2024,40(4):915-932. [8] SU H,LI S,YANG G Z,et al. Janus micro/nanorobots in biomedical applications[J]. Advanced Healthcare Materials,2023,12(16):2202391. [9] YANG Y,JIAO P. Nanomaterials and nanotechnology for biomedical soft robots[J]. Materials Today Advances,2023,17:100338. [10] HUANG X,QI Y,BU T,et al. Overview of advanced micro-nano manufacturing technologies for triboelectric nanogenerators[J]. Nanoenergy Advances,2022,2(4):316-343. [11] WANG Y,ZHANG X,XU J,et al. The development of microscopic imaging technology and its application in micro-and nanotechnology[J]. Frontiers in Chemistry,2022,10:931169. [12] ZHENG J,QI R,DAI C,et al. Enzyme catalysis biomotor engineering of neutrophils for nanodrug delivery and cell-based thrombolytic therapy[J]. ACS Nano,2022,16(2):2330-2344. [13] PARK J,KIM J Y,PANé S,et al. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots[J]. Advanced Healthcare Materials,2021,10(2):2001096. [14] KIM S,QIU F,KIM S,et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation[J]. Advanced Materials,2013,25(41):5863-5868. [15] JEON S,KIM S,HA S,et al. Magnetically actuated microrobots as a platform for stem cell transplantation[J]. Science Robotics,2019,4(30):eaav4317. [16] JEON S,HOSHIAR A K,KIM K,et al. A magnetically controlled soft microrobot steering a guidewire in a three- dimensional phantom vascular network[J]. Soft Robotics,2019,6(1):54-68. [17] HUSSEIN H,DAMDAM A,REN L,et al. Actuation of mobile microbots:A review[J]. Advanced Intelligent Systems,2023,5(9):2300168. [18] YANG J,ZHENG J,AI R,et al. Plasmon-enhanced,self-traced nanomotors on the surface of silicon[J]. Angewandte Chemie,2021,133(47):25162-25171. [19] LI J,GAO W,DONG R,et al. Nanomotor lithography[J]. Nature Communications,2014,5(1):5026. [20] DAI J,CHENG X,LI X,et al. Solution-synthesized multifunctional Janus nanotree microswimmer[J]. Advanced Functional Materials,2021,31(48):2106204. [21] CHEN L,GAN Q,XIAO X,et al. Bio-templated synthesis of MnO2-based micromotors for enhanced heavy metal removal from aqueous solutions[J]. Journal of Materials Science,2024,59(10):4267-4280. [22] ROSSI C,RUSSO F. Automata (towards automation and robots)[M]. Springer International Publishing,2017. [23] MORAN M E. Evolution of robotic arms[J]. Journal of Robotic Surgery,2007,1(2):103-111. [24] FRESCHI C,FERRARI V,MELFI F,et al. Technical review of the da vinci surgical telemanipulator[J]. The International Journal of Medical Robotics and Computer Assisted Surgery,2013,9(4):396-406. [25] KUINDERSMA S,DEITS R,FALLON M,et al. Optimization-based locomotion planning,estimation,and control design for the atlas humanoid robot[J]. Autonomous Robots,2016,40:429-455. [26] SOLIMAN W S. Guardian of time flow:Baboon on the water clock during the greco-roman period[J]. Journal of Association of Arab Universities for Tourism and Hospitality,1999,23(2):185-219. [27] YAN H S,LIN T Y. A study on ancient chinese time laws and the time-telling system of su song’s clock tower[J]. Mechanism and Machine Theory,2002,37(1):15-33. [28] XIDONG J. The productivity level of the song dynasty[J]. Social Sciences in China,2023,44(2):74-93. [29] MORAN M E. Jacques de vaucanson:The father of simulation[J]. Journal of Endourology,2007,21(7):679- 683. [30] IAVAZZO C,GKEGKE X E D,IAVAZZO P E,et al. Razvoj robota kroz povijest do “da vincijevog robota”[J]. Acta Medico-Historica Adriatica,2014,12(2):247-258. [31] PORTER C I. Taking the Jacquard industry into the 1990s[J]. Textile Progress,1989,19(4):8-18. [32] EVANS T. The race of machines:Blackness and prosthetics in early american science fiction[J]. American Literature,2018,90(3):553-584. [33] VUKOBRATOVIĆ M. Nikola tesla and robotics[J]. Serbian Journal of Electrical Engineering,2006,3(2):163-175. [34] ENGELBERGER J F. Designing robots for industrial environments[J]. Mechanism and Machine Theory,1977,12(5):403-412. [35] QIANG T,WOLFF M. English in china today at the harbin institute of technology:Volume i[M]. Cambridge Scholars Publishing,2012. [36] KUIPERS B,FEIGENBAUM E A,HART P E,et al. Shakey:From conception to history[J]. Ai Magazine,2017,38(1):88-103. [37] BORBONI A,REDDY K V V,ELAMVAZUTHI I,et al. The expanding role of artificial intelligence in collaborative robots for industrial applications:A systematic review of recent works[J]. Machines,2023,11(1):111. [38] GU H,MöCKLI M,EHMKE C,et al. Self-folding soft-robotic chains with reconfigurable shapes and functionalities[J]. Nature Communications,2023,14(1):1263. [39] SHAO G,WARE H O T,HUANG J,et al. 3D printed magnetically-actuating micro-gripper operates in air and water[J]. Additive Manufacturing,2021,38:101834. [40] HAO B,WANG X,DONG Y,et al. Focused ultrasound enables selective actuation and newton-level force output of untethered soft robots[J]. Nature Communications,2024,15(1):5197. [41] STANDARDIZATION I O F. ISO 8373:2021 Robotics–Vocabulary[Z]. ISO/TC 299. 2021. [42] LUO Z,CHENG W,ZHAO T,et al. Intelligent sensory systems toward soft robotics[J]. Applied Materials Today,2024,37:102122. [43] 牛丽周,丁亮,高海波,等. 软体足式机器人驱动、建模与仿真研究综述[J]. 机械工程学报,2021,57(19):1-20. NIU Lizhou,DING Liang,GAO Haibo,et al. Review of actuation,modeling and simulation in soft-legged robot[J]. Chinese Journal of Mechanical Engineering,2021,57(19):1-20. [44] ZACHARAKI A,KOSTAVELIS I,GASTERATOS A,et al. Safety bounds in human robot interaction:A survey[J]. Safety Science,2020,127:104667. [45] 赖一楠,叶鑫,丁汉. 共融机器人重大研究计划研究进展[J]. 机械工程学报,2021,57(23):1-11,20. LAI Yinan,YE Xin,DING Han. Research progress of major research plan on tri-co robots[J]. Chinese Journal of Mechanical Engineering,2021,57(23):1-11,20. [46] REN K,YU J. Research status of bionic amphibious robots:A review[J]. Ocean Engineering,2021,227:108862. [47] SUN H,WEI C,YAO Y A,et al. Analysis and experiment of a bioinspired multimode octopod robot[J]. Chinese Journal of Mechanical Engineering,2023,36(1):142. [48] YE J,FAN Y,NIU G,et al. Intelligent micro/ nanomotors:Fabrication,propulsion,and biomedical applications[J]. Nano Today,2024,55:102212. [49] JING X,GUO W. Modeling and configuration design of electromagnetic actuation coil for a magnetically controlled microrobot[J]. Chinese Journal of Mechanical Engineering,2019,32(1):63. [50] FEYNMAN R. There’s plenty of room at the bottom[J]. Resonance,2011,16:890-905. [51] PAXTON W F,KISTLER K C,OLMEDA C C,et al. Catalytic nanomotors:Autonomous movement of striped nanorods[J]. Journal of the American Chemical Society,2004,126(41):13424-13431. [52] LIU W,CHEN X,LU X,et al. From passive inorganic oxides to active matters of micro/nanomotors[J]. Advanced Functional Materials,2020,30(39):2003195. [53] CHEN C,DING S,WANG J. Materials consideration for the design,fabrication and operation of microscale robots[J]. Nature Reviews Materials,2024,9:159-172. [54] HERMANOVá S,PUMERA M. Polymer platforms for micro-and nanomotor fabrication[J]. Nanoscale,2018,10(16):7332-7342. [55] BANNO T,UENO K,KOJIMA T,et al. Induction for self-propelled motion of artificial objects with/without shape anisotropy[J]. Journal of Oleo Science,2024,73(4):509-518. [56] KATURI J,MA X,STANTON M M,et al. Designing micro-and nanoswimmers for specific applications[J]. Accounts of Chemical Research,2017,50(1):2-11. [57] SáNCHEZ S,SOLER L,KATURI J. Chemically powered micro-and nanomotors[J]. Angewandte Chemie International Edition,2015,54(5):1414-1444. [58] ELNAGGAR A,KANG S,TIAN M,et al. State of the art in actuation of micro/nanorobots for biomedical applications[J]. Small Science,2024,4(3):2300211. [59] PREETAM S,PRITAM P,MISHRA R,et al. Empowering tomorrow’s medicine:Energy-driven micro/ nano-robots redefining biomedical applications[J]. Molecular Systems Design & Engineering,2024,9:892-911. [60] CHEN Y,CHEN D,LIANG S,et al. Recent advances in field-controlled micro–nano manipulations and micro- nano robots[J]. Advanced Intelligent Systems,2022,4(3):2100116. [61] MUñOZ J,URSO M,PUMERA M. Self-propelled multifunctional microrobots harboring chiral supramolecular selectors for “enantiorecognition-on-the-fly”[J]. Angewandte Chemie International Edition,2022,61(14):e202116090. [62] GAO W,PEI A,DONG R,et al. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels[J]. Journal of the American Chemical Society,2014,136(6):2276-2279. [63] WANG J,TOEBES B J,PLACHOKOVA A S,et al. Self- propelled PLGA micromotor with chemotactic response to inflammation[J]. Advanced Healthcare Materials,2020,9(7):1901710. [64] VILELA D,COSSíO U,PARMAR J,et al. Medical imaging for the tracking of micromotors[J]. ACS Nano,2018,12(2):1220-1227. [65] ZHANG Y,ZHANG L,YANG L,et al. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins[J]. Science Advances,2019,5(1):eaau9650. [66] PATIñO T,FEINER-GRACIA N,ARQUÉ X,et al. Influence of enzyme quantity and distribution on the self- propulsion of non-Janus urease-powered micromotors[J]. Journal of the American Chemical Society,2018,140(25):7896-7903. [67] CAO W,LIU Y,RAN P,et al. Ultrasound-propelled janus rod-shaped micromotors for site-specific sonodynamic thrombolysis[J]. ACS Applied Materials & Interfaces,2021,13(49):58411-58421. [68] SOLOVEV A A,MEI Y,BERMúDEZ UREñA E,et al. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles[J]. Small,2009,5(14):1688- 1692. [69] YU Y,SHANG L,GAO W,et al. Microfluidic lithography of bioinspired helical micromotors[J]. Angewandte Chemie,2017,129(40):12295-12299. [70] LIU Y,GE D,CONG J,et al. Magnetically powered annelid-worm-like microswimmers[J]. Small,2018,14(17):1704546. [71] HUANG T-Y,SAKAR M S,MAO A,et al. 3D printed microtransporters:Compound micromachines for spatiotemporally controlled delivery of therapeutic agents[J]. Advanced Materials,2015,27(42):6644-6650. [72] CUI D,YAN Z,CHEN X,et al. Electroosmotic flow spin tracers near chemical nano/micromotors[J]. Nanoscale,2024,16(6):2847-2851. [73] ZHAO Z,CHEN J,ZHAN G,et al. Controlling the collective behaviors of ultrasound-driven nanomotors via frequency regulation[J]. Micromachines,2024,15(2):262. [74] XIONG J,LI X,HE Z,et al. Light-controlled soft bio-microrobot[J]. Light:Science & Applications,2024,13(1):55. [75] ZHUANG R,ZHOU D,CHANG X,et al. Alternating current electric field driven topologically defective micro/nanomotors[J]. Applied Materials Today,2022,26:101314. [76] ZHOU D,YUE H,CHANG X,et al. Mimicking motor proteins:Wall-guided self-navigation of microwheels[J]. ACS Nano,2024,18(12):8853-8862. [77] WU J,JIAO N,LIN D,et al. Dual-responsive nanorobot-based marsupial robotic system for intracranial cross-scale targeting drug delivery[J]. Advanced Materials,2024,36(9):2306876. [78] ASTUMIAN R D. How molecular motors work–insights from the molecular machinist’s toolbox:The nobel prize in chemistry 2016[J]. Chemical Science,2017,8(2):840-845. [79] MISKIN M Z,CORTESE A J,DORSEY K,et al. Electronically integrated,mass-manufactured,microscopic robots[J]. Nature,2020,584(7822):557-561. [80] LI T,CHANG X,WU Z,et al. Autonomous collision-free navigation of microvehicles in complex and dynamically changing environments[J]. ACS Nano,2017,11(9):9268-9275. [81] ZHANG H,LI Z,GAO C,et al. Dual-responsive biohybrid neutrobots for active target delivery[J]. Science Robotics,2021,6(52):eaaz9519. [82] YANG M,ZHANG Y,MOU F,et al. Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis[J]. Science Advances,2023,9(48):eadk7251. [83] YUE H,CHANG X,LIU J,et al. Wheel-like magnetic- driven microswarm with a band-aid imitation for patching up microscale intestinal perforation[J]. ACS Applied Materials & Interfaces,2022,14(7):8743-8752. [84] PENG X,URSO M,KOLACKOVA M,et al. Biohybrid magnetically driven microrobots for sustainable removal of micro/nanoplastics from the aquatic environment[J]. Advanced Functional Materials,2024,34(3):2307477. [85] LI T,LI J,ZHANG H,et al. Magnetically propelled fish- like nanoswimmers[J]. Small,2016,12(44):6098-6105. [86] XU H,MEDINA-SáNCHEZ M,MAGDANZ V,et al. Sperm-hybrid micromotor for targeted drug delivery[J]. ACS Nano,2018,12(1):327-337. [87] ZENG M,YUAN S,HUANG D,et al. Accelerated design of catalytic water-cleaning nanomotors via machine learning[J]. ACS Applied Materials & Interfaces,2019,11(43):40099-40106. [88] XU H,WU S,LIU Y,et al. 3D nanofabricated soft microrobots with super-compliant picoforce springs as onboard sensors and actuators[J]. Nature Nanotechnology,2024,19:494-503. [89] LIN Z,FAN X,SUN M,et al. Magnetically actuated peanut colloid motors for cell manipulation and patterning[J]. ACS Nano,2018,12(3):2539-2545. [90] YANG Q,XU H,WEN H,et al. Graphene oxide induced enhancement of light-driven micromotor with biocompatible fuels[J]. Applied Materials Today,2021,22:100943. [91] GORDóN J,ARRUZA L,IBáñEZ M D,et al. On the move-sensitive fluorescent aptassay on board catalytic micromotors for the determination of interleukin-6 in ultra-low serum volumes for neonatal sepsis diagnostics[J]. ACS Sensors,2022,7(10):3144-3152. [92] REN L,ZHOU D,MAO Z,et al. Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power[J]. ACS Nano,2017,11(10):10591-10598. [93] MARIC T,NASIR M Z M,WEBSTER R D,et al. Tailoring metal/TiO2 interface to influence motion of light-activated Janus micromotors[J]. Advanced Functional Materials,2020,30(9):1908614. [94] VALDEZ-GARDUñO M,LEAL-ESTRADA M,OLIVEROS-MATA E S,et al. Density asymmetry driven propulsion of ultrasound-powered Janus micromotors[J]. Advanced Functional Materials,2020,30(50):2004043. [95] CHANG X,LI L,LI T,et al. Accelerated microrockets with a biomimetic hydrophobic surface[J]. RSC Advances,2016,6(90):87213-87220. [96] LU X,OU H,WEI Y,et al. Superfast fuel-free tubular hydrophobic micromotors powered by ultrasound[J]. Sensors and Actuators B:Chemical,2022,372:132667. [97] ZHOU M,XING Y,LI X,et al. Cancer cell membrane camouflaged semi-yolk@ spiky-shell nanomotor for enhanced cell adhesion and synergistic therapy[J]. Small,2020,16(39):2003834. [98] POURRAHIMI A M,VILLA K,YING Y,et al. ZnO/ZnO2/Pt Janus micromotors propulsion mode changes with size and interface structure:Enhanced nitroaromatic explosives degradation under visible light[J]. ACS Applied Materials & Interfaces,2018,10(49):42688-42697. [99] POURRAHIMI A M,VILLA K,MANZANARES PALENZUELA C L,et al. Catalytic and light-driven ZnO/Pt Janus nano/micromotors:Switching of motion mechanism via interface roughness and defect tailoring at the nanoscale[J]. Advanced Functional Materials,2019,29(22):1808678. [100] ZHENG C,LI Z,XU T,et al. Spirulina-templated porous hollow carbon@ magnetite core-shell microswimmers[J]. Applied Materials Today,2021,22:100962. [101] CEYLAN H,YASA I C,YASA O,et al. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release[J]. ACS Nano,2019,13(3):3353-3362. [102] REN M,GUO W,GUO H,et al. Microfluidic fabrication of bubble-propelled micromotors for wastewater treatment[J]. ACS Applied Materials & Interfaces,2019,11(25):22761-22767. [103] LI J,SATTAYASAMITSATHIT S,DONG R,et al. Template electrosynthesis of tailored-made helical nanoswimmers[J]. Nanoscale,2014,6(16):9415-9420. [104] WANG W,WU Z,LIN X,et al. Gold-nanoshell- functionalized polymer nanoswimmer for photomechanical poration of single-cell membrane[J]. Journal of the American Chemical Society,2019,141(16):6601-6608. [105] ZHOU J,KARSHALEV E,MUNDACA-URIBE R,et al. Physical disruption of solid tumors by immunostimulatory microrobots enhances antitumor immunity[J]. Advanced Materials,2021,33(49):2103505. [106] KWAK M,JUNG I,KANG Y G,et al. Multi-block magnetic nanorods for controlled drug release modulated by fourier transform surface plasmon resonance[J]. Nanoscale,2018,10(39):18690-18695. [107] GUO J,GALLEGOS J J,TOM A R,et al. Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices[J]. ACS Nano,2018,12(2):1179-1187. [108] ZHU J,WANG H,ZHANG Z. Shape-tunable Janus micromotors via surfactant-induced dewetting[J]. Langmuir,2021,37(16):4964-4970. [109] XU B,ZHANG X,TIAN Z,et al. Microdroplet-guided intercalation and deterministic delamination towards intelligent rolling origami[J]. Nature Communications,2019,10(1):5019. [110] DONG Y,WANG L,YUAN K,et al. Magnetic microswarm composed of porous nanocatalysts for targeted elimination of biofilm occlusion[J]. ACS Nano,2021,15(3):5056-5067. [111] WANG X,SRIDHAR V,GUO S,et al. Fuel-free nanocap-like motors actuated under visible light[J]. Advanced Functional Materials,2018,28(25):1705862. [112] XIE H,SUN M,FAN X,et al. Reconfigurable magnetic microrobot swarm:Multimode transformation,locomotion,and manipulation[J]. Science Robotics,2019,4(28):eaav8006. [113] ZHOU D,GAO Y,YANG J,et al. Light-ultrasound driven collective “firework” behavior of nanomotors[J]. Advanced Science,2018,5(7):1800122. [114] FENG Y,JIA D,YUE H,et al. Breaking through barriers:Ultrafast microbullet based on cavitation bubble[J]. Small,2023,19(18):2207565. [115] WANG S,GUO X,XIU W,et al. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles[J]. Science Advances,2020,6(31):eaaz8204. [116] LIANG X,MOU F,HUANG Z,et al. Hierarchical microswarms with leader–follower-like structures:Electrohydrodynamic self-organization and multimode collective photoresponses[J]. Advanced Functional Materials,2020,30(16):1908602. [117] ZHANG S,MOU F,YU Z,et al. Heterogeneous sensor-carrier microswarms for collaborative precise drug delivery toward unknown targets with localized acidosis[J]. Nano Letters,2024,24(20):5958-5967 [118] CAO C,MOU F,YANG M,et al. Harnessing disparities in magnetic microswarms:From construction to collaborative tasks[J]. Advanced Science,2024,11(30):2401711. [119] SU Y Y,ZHANG M J,WANG W,et al. Bubble-propelled hierarchical porous micromotors from evolved double emulsions[J]. Industrial & Engineering Chemistry Research,2019,58(4):1590-1600. [120] GHOSH A,LI L,XU L,et al. Gastrointestinal-resident,shape-changing microdevices extend drug release in vivo[J]. Science Advances,2020,6(44):eabb4133. [121] LIU J,HUANG Z,YUE H,et al. A magnetic field- driven multi-functional “medical ship” for intestinal tissue collection in vivo[J]. Nanoscale,2023,15(38):15831-15839. [122] ESTEBAN-FERNáNDEZ DE ÁVILA B,ANGSANTIKUL P,RAMíREZ-HERRERA D E,et al. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins[J]. Science Robotics,2018,3(18):eaat0485. [123] FAN Z,GAO R X,HE Q,et al. New sensing technologies for monitoring machinery,structures,and manufacturing processes[J]. Journal of Dynamics,Monitoring and Diagnostics,2023,2(2):69-88. [124] GONG Z,CHEN B K,LIU J,et al. Robotic probing of nanostructures inside scanning electron microscopy[J]. IEEE Transactions on Robotics,2014,30(3):758-765. [125] JIN Z,ZHANG Z,GU G X. Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning[J]. Manufacturing Letters,2019,22:11-15. [126] YANG L,JIANG J,JI F,et al. Machine learning for micro-and nanorobots[J]. Nature Machine Intelligence,2024,6:605-618. |
[1] | 梁鹏, 赵文卓, 武通海, 冉毅. 发电机转子小齿裂纹的超声回波特性及在机检测方法[J]. 机械工程学报, 2024, 60(8): 11-21. |
[2] | 秦光林, 崔长彩, 尹方辰, 黄辉. 面向复杂立体石雕的机器人面扫描视点规划[J]. 机械工程学报, 2024, 60(8): 22-33. |
[3] | 张云舒, 吴斌涛, 赵昀, 丁东红, 潘增喜, 李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(8): 65-80. |
[4] | 侯旭朝, 马越, 项昌乐. 电驱动履带车辆转向稳定性控制研究[J]. 机械工程学报, 2024, 60(8): 233-244. |
[5] | 陶亮, 唐钰, 李元强, 张大山, 张小龙. 多胎内传感器智能轮胎开发平台设计与侧偏试验研究[J]. 机械工程学报, 2024, 60(8): 245-255. |
[6] | 冯俊鑫, 赵振宙, 陈明, 江瑞芳, 王丁丁, 刘一格. 涡流发生器高度对风力机翼段动态失速过程的影响分析[J]. 机械工程学报, 2024, 60(8): 291-298. |
[7] | 张行, 富宽, 陈铭浩, 李睿, 石新娜. 压差式多节串联管道机器人越障时动力学演化规律及减振分析[J]. 机械工程学报, 2024, 60(8): 348-359. |
[8] | 赵川, 孙凤, 金俊杰, 徐方超, 张明, OKA Koichi. 混合磁悬浮系统零功率抗偏载控制方法研究[J]. 机械工程学报, 2024, 60(8): 360-369. |
[9] | 徐丰羽, 马凯威, 宋巨龙, 范保杰, 武新军. 基于弹簧-磁流变阻尼器的拉索攀爬机器人减振机构及控制方法[J]. 机械工程学报, 2024, 60(8): 384-395. |
[10] | 邓建新, 袁邦颐, 黄秋林, 丁度坤, 辛曼玉, 刘光明. 基于工业机器人的复杂曲面磨抛关键技术综述[J]. 机械工程学报, 2024, 60(7): 1-21. |
[11] | 和东平, 王涛, 刘元铭, 徐慧东, 王君, 王志华. 板带轧机振动理论研究进展[J]. 机械工程学报, 2024, 60(7): 93-113. |
[12] | 商德勇, 黄欣怡, 黄云山, 张天佑. 基于Kane方程的Delta并联机器人刚柔耦合动力学研究[J]. 机械工程学报, 2024, 60(7): 124-133. |
[13] | 李坤, 吉辰, 白生文, 蒋斌, 潘复生. 高性能镁合金电弧增材制造技术研究现状与展望[J]. 机械工程学报, 2024, 60(7): 289-311. |
[14] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
[15] | 杜文博, 李晓亮, 李霞, 胡深恒, 朱胜. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||