机械工程学报 ›› 2023, Vol. 59 ›› Issue (21): 341-355.doi: 10.3901/JME.2023.21.341
王博1, 王大刚1, 种海浪1, 沈小满1, 张德坤2
收稿日期:
2023-02-21
修回日期:
2023-07-16
出版日期:
2023-11-05
发布日期:
2024-01-15
通讯作者:
王大刚(通信作者),男,1984年出生,博士,教授,博士研究生导师。主要研究方向为摩擦疲劳与摩擦传动。E-mail:wangdg@cumt.edu.cn
作者简介:
王博,男,1992年出生,博士研究生。主要研究方向为钢丝绳摩擦腐蚀。E-mail:Wangb1213@cumt.edu.cn
基金资助:
WANG Bo1, WANG Dagang1, CHONG Hailang1, SHEN Xiaoman1, ZHANG Dekun2
Received:
2023-02-21
Revised:
2023-07-16
Online:
2023-11-05
Published:
2024-01-15
摘要: 大跨度多塔悬索桥主鞍座两侧主缆钢丝与鞍座材料间受恒载、车载、风荷载以及腐蚀环境耦合作用产生摩擦腐蚀疲劳行为,导致钢丝承载强度渐变劣化,严重影响主缆承载安全性。因此,研究主缆钢丝与鞍座材料摩擦腐蚀疲劳行为至关重要。搭建钢丝摩擦腐蚀疲劳试验台开展钢丝与鞍座材料摩擦腐蚀疲劳实验,运用超景深电子显微镜、扫描电子显微镜考察主缆钢丝磨损轮廓、磨损机理、磨损系数和横截面失效面积特性;通过万能试验机并结合损伤力学理论和有限元法,建立疲劳钢丝损伤度演化模型和钢丝承载强度劣化模型。结果表明:钢丝摩擦因数呈迅速增加-减小-增加-稳定趋势,随接触载荷增大而减小,随疲劳载荷增大而增大;磨损轮廓随疲劳次数近似线性增加,失效面积随疲劳次数近似抛物线增加,二者随接触载荷和疲劳载荷的增大均增加;磨损系数在磨损稳定期减小,随疲劳次数增加小幅度增长;磨损机理以黏着磨损、磨粒磨损、疲劳磨损和腐蚀磨损为主;钢丝损伤度与疲劳次数呈二次函数关系;接触载荷和疲劳载荷的增加,导致钢丝损伤度增大、承载强度降低。结果对悬索桥主缆损伤及承载安全性能评估具有理论指导意义。
中图分类号:
王博, 王大刚, 种海浪, 沈小满, 张德坤. 悬索桥主缆钢丝与鞍座材料摩擦腐蚀疲劳行为[J]. 机械工程学报, 2023, 59(21): 341-355.
WANG Bo, WANG Dagang, CHONG Hailang, SHEN Xiaoman, ZHANG Dekun. Tribo-corrosion-fatigue Behaviors of Suspension Bridge Cable Wires in Contact with the Saddle Material[J]. Journal of Mechanical Engineering, 2023, 59(21): 341-355.
[1] 王大刚,朱辉龙,高文丽,等. 悬索桥主缆平行钢丝动态接触与滑移机理研究[J]. 机械工程学报, 2021, 57(11):228-242. WANG Dagang, ZHU Huilong, GAO Wenli, et al. Research on dynamic contact and slip mechanisms of parallel steel wires in the main cable of suspension bridge[J]. Journal of Mechanical Engineering, 2021, 57(11):228-242. [2] WANG D G, YE J, WANG B, et al. Review on the service safety assessment of main cable of long span multi-tower suspension bridge[J]. Applied Sciences-Basel, 2021, 11(13). [3] TIAN H, WANG J, CAO S, et al. Probabilistic assessment of the safety of main cables for long-span suspension bridges considering corrosion effects[J]. Advances in Civil Engineering, 2021, 2021:6627762. [4] WANG D, WANG B, GAO W, et al. Dynamic contact behaviors of saddle materials for suspension bridge[J]. Engineering Failure Analysis, 2022, 134:106031. [5] KARANCI E, BETTI R. Modeling corrosion in suspension bridge main cables. II:Long-term corrosion and remaining strength[J]. Journal of Bridge Engineering, 2018, 23(6):00001234. [6] PÉRIERA V, DIENGA L, GAILLET L, et al. Fretting-fatigue behavior of bridge engineering cables in a solution of sodium chloride[J]. Wear, 2009, 267:308-314. [7] CHENG Z Y, ZHANG Q H, BAO Y, et al. Analytical models of frictional resistance between cable and saddle equipped with friction plates for multispan suspension bridges[J]. Journal of Bridge Engineering, 2018, 23(1):1-13. [8] 姜晓霞. 金属的腐蚀磨损[M]. 北京:化学工业出版社, 2003. JIANG Xiaoxia. Corrosion and wear of metal[M]. Beijing:Chemical Industry Press, 2003. [9] JIANG J, STACK M M, NEVILLE A. Modelling the tribo-corrosion interaction in aqueous sliding conditions[J]. Tribology International, 2002, 35(10):669-679. [10] GUAN J, JIANG X, XIANG Q, et al. Corrosion and tribocorrosion behavior of titanium surfaces designed by electromagnetic induction nitriding for biomedical applications[J]. Surface Coatings Technology, 2021, 409:126844. [11] 王荣. 金属材料的腐蚀疲劳[M]. 西安:西北工业大学出版社, 2001. WANG Rong. Corrosion fatigue of metallic materials[M]. Xi'an:Northwestern Polytechnical University Press, 2001. [12] 余夏明. 桥梁平行钢丝腐蚀疲劳试验与吊索寿命评估研究[D]. 南京:东南大学, 2019. YU Xiaming. Corrosion fatigue test on bridge parallel steel wires and fatigue life assessment of suspenders[D]. Nanjing:Southeast University, 2019. [13] 徐俊,陈惟珍,刘学.斜拉索退化机理及钢丝力学模型[J]. 同济大学学报, 2008, 36(7):911-915. XU Jun, CHEN Weizhen, LIU Xue. Deterioration mechanism of cables and mechanics model of wires[J]. Journal of Tongji University, 2008, 36(7):911-915. [14] ZHANG D K, GENG H, ZHANG Z F, et al. Investigation on the fretting fatigue behaviors of steelwires under different strain ratios[J]. Wear, 2013, 303(1-2):334-342. [15] ZHANG D K, GE S R, QIANG Y H. Research on the fatigue and fracture behavior due to the fretting wear of steel wire in hoisting rope[J]. Wear, 2003, 255(7-12):1233-1237. [16]ZHANG J, WANG D G, SONG D Z, et al. Tribo-fatigue behaviors of steel wire rope under bending fatigue with the variable tension[J]. Wear, 2019, 428-429:154-161. [17] 王大刚,张俊,朱辉龙,等. 定,变载弯曲疲劳钢丝绳失效机理对比研究[J]. 摩擦学学报, 2020, 40(6):762-773. WANG Dagang, ZHANG Jun, ZHU Huilong, et al. Comparative research on failure mechanisms of steel wire ropes during bending fatigue under constant and variable loads[J]. Tribology, 2020, 40(6):762-773. [18] WANG D, SONG D, WANG X, et al. Tribo-fatigue behaviors of steel wires under coupled tension-torsion in different environmental media[J]. Wear, 2019, 420:38-53. [19] 赵维建,张德坤,张泽锋,等.碱性腐蚀环境下接触载荷对钢丝微动疲劳行为的影响[J]. 摩擦学学报, 2012, 32(3):306-312. ZHAO Weijian, ZHANG Dekun, ZHANG Zefeng, et al. Effect of contact load on the fretting fatigue of steel wire under alkaline corrosive environment[J]. Tribology, 2012, 32(3):306-312. [20] PERIER V, DIENG L, GAILLET L, et al. Influence of an aqueous environment on the fretting behaviour of steel wires used in civil engineering cables[J]. Wear, 2011, 271(9-10):1585-1593. [21] CHANG X D, HUANG H B, PENG Y X, et al. Friction, wear and residual strength properties of steel wire rope with different corrosion types[J]. Wear, 2020, 458:203425. [22] NAKAMURA S, SUZUMURA K. Experimental study on fatigue strength of corroded bridge wires[J]. Journal of Bridge Engineering, 2012, 18(3):200-209. [23] NAKAMURA S, SUZUMURA K. Hydrogen embrittlement and corrosion fatigue of corroded bridge wires[J]. Journal of Constructional Steel Research, 2009, 65(2):269-277. [24] 宋神友,薛花娟,陈焕勇,等. 伶仃洋大桥锌-铝-稀土合金镀层钢丝腐蚀-疲劳耦合试验研究[J]. 桥梁建设, 2022, 52(2):24-30. SONG Shenyou, XUE Huajuan, CHEN Huanyong, et al. Experimental research on corrosion-fatigue coupling of Zn-Al-rare earth alloy coated steel wires of Lingdingyang bridge[J]. Bridge Construction, 2022, 52(2):24-30. [25] JAMES G. Test method for corrosion fatigue testing of cold rolled steel wire in sour- and sweet environment based on deflection controlled four point bending[J]. Journal of Physical Chemistry C, 2009, 112(32):12264-12271. [26] 齐盛珂. 斜拉索用高强钢丝腐蚀断面特征及力学性能退化实验研究[D]. 深圳:深圳大学, 2019. QI Shengke. Experimental study on corrosion characteristics and mechanical properties degradation of high-strength steel wire for stay cable[D]. Shenzhen:Shenzhen University, 2019. [27] 孙华怀,陈惟珍,杨建喜. 锈蚀断丝对拉索力学性能影响的数值研究[J]. 华南理工大学学报, 2018, 46(7):137-144. SUN Huahuai, CHEN Weizhen, YANG Jianxi. A numerical study of the effect of corrosion and breakage of wires on mechanical properties of cable[J]. Journal of South China University of Technology, 2018, 46(7):137-144. [28] KACHANOV L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999, 97(1-4):11-18. [29] 李威. 考虑强度退化的非线性累积损伤模型分析[J]. 机械强度, 2020, 42(3):723-727. LI Wei. Analysis of nonlinear cumulative damage model considering strength degradation[J]. Journal of Mechanical Strength, 2020, 42(3):723-727. |
[1] | 吕步高, 孟祥慧, 汤义虎, 陈康, 尹家宝, 谢友柏. 船用发动机重载工况下凸轮-滚轮-滚轮销耦合混合热弹流润滑分析[J]. 机械工程学报, 2024, 60(19): 116-131. |
[2] | 李梦璇, 丁昊昊, 安博洋, 王文健, 林强, 陈嵘, 刘启跃. U71Mn钢轨在工业与海洋大气环境下腐蚀与磨损行为研究[J]. 机械工程学报, 2024, 60(19): 132-143. |
[3] | 王大刚, 徐伟, 李陈晨, 孙跃威. 工况参数对悬索桥主缆索股与鞍座动态接触与微滑移行为的影响研究[J]. 机械工程学报, 2024, 60(19): 144-158. |
[4] | 曾鑫, 赖建平, 王驰, 袁小虎, 李丁骏, 余家欣. 基于高通量磁控共溅射技术的非晶合金纳米摩擦学性能研究[J]. 机械工程学报, 2024, 60(15): 185-193. |
[5] | 朱鹏娟, 刘晓玲, 周亚林, 何文卓, 郭峰. 混合陶瓷球轴承的热混合润滑性能分析[J]. 机械工程学报, 2024, 60(15): 205-215. |
[6] | 郭美玲, 杨雷, 李鹏阳, 许振涛, 许超愿, 王权岱, 李言. 氟等离子体对石墨烯纳晶碳膜的刻蚀加工及摩擦学性能调控[J]. 机械工程学报, 2024, 60(15): 216-226. |
[7] | 王优强, 徐莹, 莫君, 何彦, 赵涛, 倪陈兵. 磁场作用下水基磁流体对TC4与Si3N4摩擦学性能影响的实验研究[J]. 机械工程学报, 2024, 60(7): 174-183. |
[8] | 陈守安, 肖科, 程功, 韩彦峰. 混合润滑下考虑表面形貌的齿面摩擦与接触特性[J]. 机械工程学报, 2024, 60(7): 184-194. |
[9] | 蒋鑫池, 卢纯, 莫继良, 陈孝婷, 张庆贺, 赵婧. 考虑磨损率随温度变化的列车制动摩擦块高温磨损仿真分析[J]. 机械工程学报, 2024, 60(7): 195-202. |
[10] | 朱少禹, 张向军, 孙军, 王大刚. 粗糙表面轴承微极流体润滑的平均流量模型[J]. 机械工程学报, 2024, 60(7): 203-211. |
[11] | 项载毓, 莫继良, 贺德强, 朱松, 翟财周, 杜利清. 基于三明治阻尼结构的高速列车制动摩擦振动噪声抑制[J]. 机械工程学报, 2024, 60(5): 196-208. |
[12] | 金旭阳, 栗心明, 刘耀, 杨萍, 郭峰, 高军斌. 周期性载荷下润滑剂回填效应试验观察[J]. 机械工程学报, 2024, 60(3): 203-213. |
[13] | 王伟, 魏春艳, 屈怡珅, 董少文, 吕凡凡, 金杰, 王快社. 黑磷烯量子点作为水基润滑添加剂的摩擦学性能研究[J]. 机械工程学报, 2024, 60(3): 226-237. |
[14] | 王文健, 岳子恒, 向鹏程, 丁昊昊, 林强, 陈勇, 郭俊, 刘启跃. 列车轮轨增黏撒砂过程试验模拟与撒砂效果研究[J]. 机械工程学报, 2023, 59(22): 424-432. |
[15] | 葛翔宇, 吴晓东, 石秋雨, 宋仕祎, 王文中. 电场环境下聚乙二醇在钢/钢界面的摩擦性能研究[J]. 机械工程学报, 2023, 59(21): 313-320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||