机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 299-329.doi: 10.3901/JME.2023.19.299
郭东明, 康仁科
收稿日期:
2023-07-25
修回日期:
2023-08-26
出版日期:
2023-10-05
发布日期:
2023-12-11
作者简介:
郭东明,男,1959年出生,教授,博士研究生导师,中国工程院院士。主要研究方向为精密超精密加工与高性能制造技术。E-mail:guodm@dlut.edu.cn;康仁科,男,1962年出生,博士,教授,博士研究生导师。主要研究方向为超精密与特种加工技术。E-mail:kangrk@dlut.edu.cn
基金资助:
GUO Dongming, KANG Renke
Received:
2023-07-25
Revised:
2023-08-26
Online:
2023-10-05
Published:
2023-12-11
摘要: 单晶硅、碳化硅、氧化镓、氮化镓等半导体基片广泛应用于集成电路、功率器件和微传感器等半导体器件的制造。超精密磨削是半导体基片平整化加工和背面减薄加工的核心工艺技术,对半导体器件的加工效率及加工质量具有重要的影响。为了满足半导体器件的使用性能,半导体材料的种类逐渐增多,半导体基片的加工要求不断提高,对半导体基片超精密磨削技术不断提出新的挑战。为了实现半导体基片的高效率高质量磨削加工,需要对半导体基片超精密磨削理论、工艺、工具和装备全面深入的理解。围绕半导体基片超精密磨削加工的表面材料去除机理、表面质量及控制方法、高效低损伤磨削工艺和超精密磨削装备的国内外研究现状进行了系统的论述与总结,分析了目前半导体基片超精密磨削技术面临的难题及未来的发展趋势,为后续半导体基片超精密磨削技术的研究提供指导。
中图分类号:
郭东明, 康仁科. 半导体基片超精密磨削技术的研究现状与发展趋势[J]. 机械工程学报, 2023, 59(19): 299-329.
GUO Dongming, KANG Renke. State-of-the-art and Prospectives of Ultra-precision Grinding Technology for Semiconductor Substrates[J]. Journal of Mechanical Engineering, 2023, 59(19): 299-329.
[1] 刘宇,张越. 我国集成电路产业的政策演化逻辑研究——基于政策工具和创新价值链双元视角[J]. 科技促进发展,2023,19(4):208-218. LIU Yu,ZHANG Yue. Research on the policy evolution logic of China's integrated circuit industry——Based on the perspective of policy tools and innovation value chain ambidexterity[J]. Science & Technology for Development,2023,19(4):208-218. [2] 马源,屠晓杰. 全球集成电路产业:成长、迁移与重塑[J]. 信息通信技术与政策,2022(5):68-77. MA Yuan,TU Xiaojie. Global integrated circuit industry:growth,migration and reshaping[J]. Information and Communications Technology and Policy,2022(5):68-77. [3] 陈林森,乔文,叶燕,等. 面向柔性光电子器件的微纳光制造关键技术与应用[J]. 光学学报,2021,41(8):277-300. CHEN Linsen,QIAO Wen,YE Yan,et al. Critical technologies of micro-nano-manufacturing and its applications for flexible optoelectronic devices[J]. Acta Optica Sinica,2021,41(8):277-300. [4] 陈锐,王锦成,章文卓,等.微结构传感器的激光制造技术研究进展[J]. 光电工程,2023,50(3):107-122. CHEN Rui,WANG Jincheng,ZHANG Wenzhuo,et al. Research progress of laser manufacturing technology for microstructure sensor[J]. Opto-Electronic Engineering,2023,50(3):107-122. [5] 郝跃.高效能半导体器件进展与展望[J]. 重庆邮电大学学报,2021,33(6):885-890. HAO Yue.Progress and prospect of high-performance semiconductor devices[J]. Journal of Chongqing University of Posts and Telecommunications,2021,33(6):885-890. [6] 柏松,李士颜,杨晓磊,等. 高压大功率碳化硅电力电子器件研制进展[J]. 科技导报,2021,39(14):56-62. BAI Song,LI Shiyan,YANG Xiaolei,et al. Progress in developing high-voltage SiC power devices[J]. Science & Technology Review,2021,39(14):56-62. [7] JIANG H X,LIN J Y. Hexagonal boron nitride for deep ultraviolet photonic devices[J]. Semiconductor Science and Technology,2014,29:0840038. [8] 梁红伟,廖传武,夏晓川,等. 第三代半导体辐射探测器研究进展[J]. 科技导报,2021,39(14):69-82. LIANG Hongwei,LIAO Chuanwu,XIA Xiaochuan,et al. Research progress of the third generation semiconductor radiation detector[J]. Science & Technology Review,2021,39(14):69-82. [9] DU X W,GUO Z L,MENG Y,et al. Effects of surface properties of GaN semiconductors on cell behavior[J]. Heliyon,2023:e18150. [10] HEEGER A J. Semiconducting and metallic polymers:the fourth generation of polymeric materials[J]. Synthetic Metals,2001,125(1):23-42. [11] WU J F. The development and spplication of semiconductor materials[J]. 20207th International Forum on Electrical Engineering and Automation (IFEEA),2020:153-156. [12] 高强,毛彩霞,薛丽,等. 多功能磷化铟半导体材料的合成与表征[J]. 华中师范大学学报,2023,57(2):250-254. GAO Qiang,MAO Caixia,XUE Li,et al. Synthesis and characterization of a versatile semiconductor material:indium phosphide[J]. Journal of Central China Normal University,2023,57(2):250-254. [13] 高尚,李洪钢,康仁科,等. 新一代半导体材料氧化镓单晶的制备方法及其超精密加工技术研究进展[J]. 机械工程学报,2021,57(9):213-232. GAO Shang,LI Honggang,KANG Renke,et al. Recent advance in preparation and ultra-precision machining of new generation semiconductor material of β-Ga2O3 single crystals[J]. Journal of Mechanical Engineering,2021,57(9):213-232. [14] XUE H W,HE Q M,JIAN G Z,et al. An overview of the ultrawide bandgap Ga2O3 semiconductor-based schottky barrier diode for power electronics application[J]. Nanoscale Research Letters,2018,13:290. [15] TSAO J Y,CHOWDHURY S,HOLLIS M A,et al.Ultrawide-bandgap semiconductors:Research opportunities and challenges[J]. Advanced Electoronic Materials,2018,4:16005011. [16] UMEZAWA H. Diamond semiconductor devices,state-of-the-art of material growth and device processing[C]//The 2020 IEEE International Eelectron Ddevices Meeting (IEDM),2020. [17] GOLDSMITH N,KRESSEL H.Semiconductor-materials and processes 1 fabrication technology-introduction[J]. RCA Review,1983,44(1):3-4. [18] 高尚,李天润,郎鸿业,等. 工件旋转法磨削硅片的亚表面损伤深度预测[J]. 光学精密工程,2022,30(17):2077-2087. GAO Shang,LI Tianrun,LANG Hongye,et al. Prediction for subsurface damage depth of silicon wafers in workpiece rotational grinding[J].Optics and Precision Engineering,2022,30(17):2077-2087. [19] 黄水泉,高尚,黄传真,等. 脆性材料磨粒加工的纳米尺度去除机理[J]. 金刚石与磨料磨具工程,2022,42(3):257-267. HUANG Shuiquan,GAO Shang,HUANG Chuanzhen,et al.Nanoscale removal mechanisms in abrasive machining of brittle solids[J]. Diamond & Arasives Engineering,2022,42(3):257-267. [20] 陶绪堂,穆文祥,贾志泰. 宽禁带半导体氧化镓晶体和器件研究进展[J]. 中国材料进展,2020,39(2):113-123. TAO Xutang,MU Wenxiang,JIA Zhitai. Research progress in the crystal growth and devices of wide-bandgap β-Ga2O3[J]. Materials China,2020,39(2):113-123. [21] JI S Q,ZHENG S,WANG F,et al. Temperature- dependent characterization,modeling,and switching speed-limitation analysis of third-generation 10-kV SiC MOSFET[J]. IEEE Transactions on Power Electronic,2018,33(5):4317-4327. [22] 骆苗地,赵金伟,丁玉龙,等. 磨料质量分数对磨硅片用金刚石砂轮磨削性能的影响[J]. 金刚石与磨料磨具工程,2021,41(6):80-84. LUO Miaodi,ZHAO Jinwei,DING Yulong,et al. Effect of abrasive mass fraction on grinding performance of diamond grinding wheel for grinding silicon wafer[J]. Diamond & Arasives Engineering,2022,42(3):275-282. [23] 石兴泰,郭磊,刘晓辉,等. 随机网格结构固结磨料磨盘平面磨削性能研究[J]. 金刚石与磨料磨具工程,2022,42(3):275-282. SHI Xingtai,GUO Lei,LIU Xiaohui,et al. Study on machining performance of fixed-abrasive lap-grinding plate with random grid structure[J]. Diamond & Arasives Engineering,2022,42(3):275-282. [24] 郝晓丽,苑泽伟,温泉,等. 超声振动辅助研磨单晶碳化硅晶片工艺研究[J]. 金刚石与磨料磨具工程,2022,42(3):268-274. HAO Xiaoli,YUAN Zewei,WEN Quan,et al. Process research on ultrasonic vibration assisted lapping of single crystal silicon carbide[J]. Diamond & Arasives Engineering,2021,41(5):46-51. [25] 韩璐,康仁科,张园,等. GH4169超声辅助磨削表面完整性研究[J]. 金刚石与磨料磨具工程,2021,41(5):46-51. HAN Lu,KANG Renke,ZHANG Yuan,et al. Research on surface integrity of GH4169 machined by ultrasonic assisted grinding[J]. Diamond & Arasives Engineering,2021,41(5):46-51. [26] IANNACCONE G,SBRANA C,MORELLI I,et al. Power electronics based on wide-bandgap semiconductors:opportunities and challenges[J]. IEEE Access,2021,9:139446-139456. [27] 潘继生,阎秋生,徐西鹏,等. 单晶SiC基片的集群磁流变平面抛光加工[J]. 中国机械工程,2013,24(18):2495-2499. PAN Jishen,YAN Qiushen,XU Xipen,et al. Cluster magnetorheological effect plane polishing on SiC single crystal slice[J]. China Mechanical Engineering,2013,24(18):2495-2499. [28] IWAI H,KAKUSHIMA K,WONG H. Challenges for future semiconductor manufacturing[C]//Frontiers In Electronics,2006,16:43-81. [29] HUFF M. Review-important considerations regarding device parameter process variations in semiconductor- based manufacturing[J]. ECS Journal of Solid State Science and Technology,2021,10:064002. [30] SCHUEGRAF K,ABRAHAM M C,Brand A,et al. Semiconductor logic technology innovation to schieve sub-10nm manufacturing[J].IEEE Journal of the Electron Devices Society,2013,1(3):66-75. [31] 陈自彬,葛梦然,毕文波,等. 单晶硅裂纹萌生的刻划深度研究[J]. 金刚石与磨料磨具工程,2021,41(3):55-59. CHEN Zibin,GE Mengran,BI Wenbo,et al. Study on crack initiation scratching depth of monocrystalline silicon[J]. Diamond & Arasives Engineering,2021,41(3):55-59. [32] 康仁科,田业冰,郭东明,等. 大直径硅片超精密磨削技术的研究与应用现状[J]. 金刚石与磨料磨具工程,2003,23(4):13-18,25. KANG Renke,TIAN Yebing,GUO Dongming,et al. Present status of research and application in ultra-precision grinding technology of large-scale silicon wafers[J]. Diamond & Arasives Engineering,2003,23(4):13-18,25. [33] 朱祥龙,康仁科,董志刚,等. 单晶硅片超精密磨削技术与设备[J]. 中国机械工程,2010,21(18):2156-2164. ZHU Xianglong,KANG Renke,DONG Zhigang,et al. Ultra-precision grinding technology and grinder of silicon wafers[J]. China Mechanical Engineering,2010,21(18):2156-2164. [34] 郭东明,康仁科. 硅片的超精密磨削理论与技术[M]. 北京:电子工业出版社,2019. GUO Dongming,KANG Renke.Theory and technology of ultraprecision grinding for silicon wafer[M].Beijing:Publish House of Electronic Industry,2019. [35] LIN B,LI Z C,SUN W P,et al. An overview of current research on simultaneous double side grinding of silicon wafers[J]. ECS Transactions,2010,27(1):1087-1092. [36] LI Z C,PEI Z J,FISHER G R. Simultaneous double side grinding of silicon wafers:A literature review[J]. International Journal of Machine Tools and Manufacture,2006,46(12-13):1449-1458. [37] PIETSCH G J,KERSTAN M. Understanding simultaneous double-disk grinding:operation principle and material removal kinematics in silicon wafer planarization[J]. Precision Engineering,2005,29(2):189-196. [38] PEI Z J,FISHER G R,LIU J. Grinding of silicon wafers:A review from historical perspectives[J]. International Journal of Machine Tools and Manufacture,2008,48(12-13):1297-1307. [39] YOUNG H T,LIAO H T,HUANG H Y. Novel method to investigate the critical depth of cut of ground silicon wafer[J]. Journal of Materials Processing Technology,2007,182(1):157-162. [40] SUN J L,QIN F,CHEN P,et al. A predictive model of grinding force in silicon wafer self-rotating grinding[J]. International Journal of Machine Tools and Manufacture,2016,109:74-86. [41] ZHANG L X,CHEN P,AN T,et al. Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process[J]. Current Applied Physics,2019,19(5):570-581. [42] LIN B,ZHOU P,WANG Z G,et al. Analytical elastic-plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer[J]. Journal of Manufacturing Science and Engineering,2018,140(12). [43] ZHANG Y,KANG R K,GAO S,et al. A new model of grit cutting depth in wafer rotational grinding considering the effect of the grinding wheel,workpiece characteristics,and grinding parameters[J]. Precision Engineering,2021,72:461-468. [44] PEI Z J,BILLINGSLEY S R,MIURA S. Grinding induced subsurface cracks in silicon wafers[J]. International Journal of Machine Tools and Manufacture,1999,39(7):1103-1116. [45] EBRAHIMI F,KALWANI L. Fracture anisotropy in silicon single crystal[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,1999,268(1-2):116-126. [46] HUANG H,LI X L,MU D K,et al. Science and art of ductile grinding of brittle solids[J]. International Journal of Machine Tools and Manufacture. 2021,161:103675. [47] ZHANG B,YIN J F. The 'skin effect' of subsurface damage distribution in materials subjected to high-speed machining[J]. International Journal of Extreme Manufacturing,2019,1:0120071. [48] YANG X X,ZHANG B. Material embrittlement in high strain-rate loading[J]. International Journal of Extreme Manufacturing,2019,1:0220032. [49] MUKAIYAMA K,OZAKI M,WADA T. Study on ductile-brittle transition of single crystal silicon by a scratching test using a single diamond tool[C]//20178th International Conference on Mechanical and Aerspace Engineering (ICMAE),2017,40-44. [50] GE M R,ZHU H T,HUANG C Z,et al. Investigation on critical crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments[J]. Materials Science in Semiconductor Processing,2018,74:261-266. [51] WANG J J,ZHANG J F,FENG P F,et al. Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials:A critical review[J]. Ceramics International,2018,44(2):1227-1239. [52] QIAN H N,CHEN M K,QI Z J,et al. Review on research and development of abrasive scratching of hard brittle materials and its underlying mechanisms[J]. Crystals,2023,13(4283). [53] SHI S H,YU Y Q,WANG N C,et al. Investigation of the anisotropy of 4H-SiC materials in nanoindentation and scratch experiments[J]. Materials,2022,15:24967. [54] ZHANG L C,ZARUDI I. Towards a deeper understanding of plastic deformation in mono-crystalline silicon[J]. International Journal of Mechanical Science,2001,43(9):1985-1996. [55] ZARUDI I,ZHANG L C. Structure changes in mono-crystalline silicon subjected to indentation experimental findings[J]. Tribology International,1999,32(12):701-712. [56] VODENITCHAROVA T,ZHANG L C. A mechanics prediction of the behaviour of mono-crystalline silicon under nano-indentation[J]. International Journal of Solids and Structures,2003,40(12):2989-2998. [57] ZARUDI I,ZOU J,ZHANG L C. Microstructures of phases in indented silicon:A high resolution characterization[J]. Applied Physics Letters,2003,82(6):874-876. [58] GASSILLOUD R,BALLIF C,GASSER P,et al. Deformation mechanisms of silicon during nanoscratching[J]. Physica Status Solidi A-Applications and Materials Science,2005,202(15):2858-2869. [59] HUANG N,ZHOU P,GOEL S. Microscopic stress analysis of nanoscratch induced sub-surface defects in a single-crystal silicon wafer[J]. Precision Engineering,2023,82:290-303. [60] ZHANG L C,TANAKA H. Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding[J]. Tribology International,1998,31(8):425-433. [61] MYLVAANAM K,ZHANG L C. Nanotwinning in monocrystalline silicon upon nanoscratching[J]. Scripta Materialia,2011,65(3):214-216. [62] MYLVAAAM K,ZHANG L C. Effect of residual stresses on the stability of bct-5 silicon[J]. Computational Materials Science,2014,81:10-14. [63] MYLVAANAM K,ZHANG L C. Effect of crystal orientation on the formation of bct-5 silicon[J]. Applied Phusics A-Materials Science & Processing,2015,120(4):1391-1398. [64] NIU Y H,ZHAO D,WANG S B,et al. Investigations on thermal effects on scratch behavior of monocrystalline silicon via molecular dynamics simulation[J]. Materials Today Communications,2021,26:102042. [65] ZHAO P Y,PAN J S,ZHAO B,et al. Molecular dynamics study of crystal orientation effect on surface generation mechanism of single-crystal silicon during the nano-grinding process[J]. Journal of Manufacturing Processes,2022,74:190-200. [66] LI P H,GUO X G,YUAN S,et al. Effects of grinding speeds on the subsurface damage of single crystal silicon based on molecular dynamics simulations[J]. Applied Surface Science,2021,554(149668). [67] LI M,GUO X G,KANG R K,et al. Study on the transformation and control mechanism of amorphous damage during the grinding process of monocrystalline silicon considering grain shapes by MD method[J]. Tribology International,2023,187. [68] GAO S,KANG R K,GUO D M,et al. Study on the subsurface damage distribution of the silicon wafer ground by diamond wheel[C]//Advances in Abrasive Technology XIII,2010,(126-128):113-118. [69] ZHOU P,XU S C,WANG Z G,et al. A load identification method for the grinding damage induced stress (GDIS) distribution in silicon wafers[J]. International Journal of Machine Tools & Manufacture,2016,107:1-7. [70] ZHAO X F,LANGFORD R M,SHAPIRO I P,et al. Onset plastic deformation and cracking behavior of silicon carbide under contact load at room temperature[J]. Journal of the American Ceramic Society,2011,94(10):3509-3514. [71] SZLUFARSKA I,KALIA R K,NAKANO A,et al. Atomistic mechanisms of amorphization during nanoindentation of SiC:A molecular dynamics study[J]. Physical review,B. Condensed Matter and Materials Physics,2005,71(17). [72] SUN S,PENG X H,XIANG H G,et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation:Formation of prismatic loops[J]. Ceramics International,2017,43(18):16313-16318. [73] MISHRA M,SZLUFARSKA I. Dislocation controlled wear in single crystal silicon carbide[J]. Journal of Materials Science,2013,48(4):1593-1603. [74] NOREYAN A,AMAR J G. Molecular dynamics simulations of nanoscratching of 3C SiC[J]. Wear,2008,265(7):956-962. [75] NAKASHIMA S,MITANI T,TOMOBE M,et al. Raman characterization of damaged layers of 4H-SiC induced by scratching[J]. AIP Advances,2016,6(1):015207. [76] TSUKIMOTO S,ISE T,MARUYAMA G,et al. Correlation between local strain distribution and microstructure of grinding-induced damage layers in 4H-SiC(0001)[J]. Materials Science Forum,2017,897:177-180. [77] ZHU B,ZHAO D,ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International,2019,45(4):5150-5157. [78] GAO S,WANG H X,HUANG H,et al. Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal[J]. International Journal of Mechanical Sciences,2023,247,108147 [79] YAN J W,GAI X H,HARADA H. Subsurface damage of single crystalline silicon carbide in nanoindentation tests[J]. Journal of Nanoscience and Nanotechnology,2010,10(11):7808-7811. [80] MENG B B,ZHANG F H,LI Z P. Deformation and removal characteristics in nanoscratching of 6H-SiC with berkovich indenter[J]. Materials Science in Semiconductor Processing,2015,31:160-165. [81] MENG B B,ZHANG Y,ZHANG F H. Material removal mechanism of 6H-SiC studied by nano-scratching with berkovich indenter[J]. Applied Physics A-Materials Science& Processing,2016,122(3). [82] YAN Q S,CHEN S K,PAN J S,et al. Surface and subsurface damage characteristics and material removal mechanism in 6H-SiC wafer grinding[J]. Materials Research Innovations,2014,18:742-747. [83] XIAO G B,TO S,ZHANG G Q. The mechanism of ductile deformation in ductile regime machining of 6H SiC[J].Computational Materials Science,2015,98:178-188. [84] WANG H X,GAO S,KANG R K,et al. Mechanical load-induced atomic-scale deformation evolution and mechanism of SiC polytypes using molecular dynamics simulation[J]. Nanomaterials,2022,12(14):248914. [85] WU Y Q,GAO S,HUANG H. The deformation pattern of single crystal β-Ga2O3 under nanoindentation[J]. Materials Science in Semiconductor Processing,2017,71:321-325. [86] WU Y Q,GAO S,KANG R K,et al. Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micro-pillars[J]. Journal of Materials Science,2019,54(3):1958-1966. [87] GAO S,YANG X,CHENG J R,et al. Deformation and fracture behaviors of monocrystalline β-Ga2O3 characterized using indentation method and first-principles calculations[J]. Materials Characterization,2023,200:112920. [88] ZHOU H,WEI J H,SONG F,et al. Analysis of the grinding characteristics of β-Ga2O3 crystal on different planes[J]. Journal of Advanced Manufacturing Systems,2020,19(02):235-248. [89] GAO S,WU Y Q,KANG R K,et al. Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3[J]. Materials Science in Semiconductor Processing,2018,79:165-170. [90] GUO J,QIU C,ZHU H,et al. Nanotribological Properties of Ga- and N-Faced Bulk Gallium Nitride Surfaces Determined by Nanoscratch Experiments[J]. Materials,2019,12(17):2653. [91] ZHANG C Y,DONG Z G,ZHANG S H,et al. The deformation mechanism of gallium-faces and nitrogen-faces gallium nitride during nanogrinding[J]. International Journal of Mechanical Sciences,2022,214:106888. [92] LI C,PIAO Y C,MENG B B,et al. Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (0001) plane[J]. Applied Surface Science,2022,578:152028. [93] HUANG Y H,WANG M C,XU Y X,et al.Investigation on gallium nitride with N-vacancy defect nano-grinding by molecular dynamics[J]. Journal of Manufacturing Processes,2020,57:153-162. [94] LI C,PIAO Y C,MENG B B,et al. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals[J]. International Journal of Machine Tools and Manufacture,2022,172:103827. [95] HUANG Y H,WANG M C,XU Y X,et al.Investigation of vibration-assisted nano-grinding of gallium nitride via molecular dynamics[J]. Materials Science in Semiconductor Processing,2021,121(1):105372 [96] LI C,HU Y,ZHANG F,et al. Molecular dynamics simulation of laser assisted grinding of GaN crystals[J]. International Journal of Mechanical Sciences,2023,239:107856. [97] PEI Z J,STRASBAUGH A. Fine grinding of silicon wafers:Grinding marks[J]. ASME International Mechanical Engineering Congress and Exposition,Proceedings,2002:311-320. [98] HUO F W,KANG R K,LI Z,et al. Origin,modeling and suppression of grinding marks in ultra precision grinding of silicon wafers[J]. International Journal of Machine Tools & Manufacture,2013,66:54-65. [99] 郭东明,康仁科,金洙吉. 大尺寸硅片超精密磨削平整化加工机理与技术[J]. 数字制造科学,2007,4(5):1-32. GUO Dongming,KANG Renke,JIN Zhuji. Machining mechanism and technology of ultra precision grinding based[J]. Digital Manufacture Science,2007,4(5):1-32. [100] 田业冰. 大尺寸硅片磨削平整化理论与工艺技术的研究[D]. 大连:大连理工大学,2007. TIAN Yebing. Study on grinding-based flattening theory and process technology for large-sized silicon wafer[D]. Dalian:Dalian University of Technology,2007. [101] TIAN Y B,JIN Z J,RANG R K,et al. Analysis of kinematic geometry on wafer rotation grinding processes[J]. China Mechanical Engineering,2005,16(20):1799-1801. [102] TAO H F,LIU Y H,ZHAO D W,et al. Undeformed chip width non-uniformity modeling and surface roughness prediction in wafer self-rotational grinding process[J]. Tribology International,2022,171. [103] 王紫光,刘金鑫,尹剑,等. 细粒度金刚石砂轮超精密磨削硅片的表面质量[J]. 中国机械工程,2023,34(2):245-251. WANG Ziguang,LIU Jinxin,YIN Jian,et al.Surface quality of ultra-precision grinding of silicon with fine diamond grinding wheels[J]. China Mechanical Engineering,2023,34(2):245-251. [104] HUO F W,GUO D M,KANG R K,et al. Nanogrinding of SiC wafers with high flatness and low subsurface damage[J]. Transactions of Nonferrous Metals Society of China,2012,22(12):3027-3033. [105] PEI Z J,STRASBAUGH A. Fine grinding of silicon wafers:designed experiments[J]. International Journal of Machine Tools & Manufacture,2002,42(3):395-404. [106] ABDUR-RASHEED A,KONNEH M. Optimization of precision grinding parameters of silicon for surface roughness based on taguchi method[J]. Advanced Materials Research,2011,264-265:997-1002. [107] DISCO. Grinding Wheels[EB/OL].[2023-07-17]. https://www.discochina.com/products/wheel/index.html. [108] ASAHI DIAMOND INDUSTRIAL Co.,Ltd Diamond Wheel[EB/OL],[2023-07-17]. https://www.asahidia. co.jp/eng/products/4537/. [109] SHINHAN DIAMOND[EB/OL].[2023-07-17]. http://en.shinhandia.co.kr/?post_type=portfolio&p=7865&ckattempt=2. [110] SINOMRCH. Semiconductor thinner grinding wheel[EB/OL].[2023-07-20]. https://www.zzsm.com/index.php?m=home&c=View&a=index&aid=46. [111] SANCHAO ADVANCED MATERIALS. Back Grinding Diamond Wheels (for Silicon Wafers)[EB/OL].[2023-07-20]. http://www.diasc.com.cn/index.php/product/295.html. [112] 兴华钻石工具. 背面减薄砂轮[EB/OL].[2023-07-20]. http://www.jyxhzs.com/CNCdaojujiagongxingye/369. html. XINGHUA DIAMOND TOOLS. Back Grinding Diamond Wheels[EB/OL].[2023-07-20]. http://www.jyxhzs.com/CNCdaojujiagongxingye/369.html. [113] 李克华. 纳米级超精密磨削IC硅片的金刚石砂轮材料研究[D]. 上海:上海大学,2016. LI Kehua. Research on materials of diamond wheels for nanoscale ultra-precision grinding of IC silicon wafer[D]. Shanghai:Shanghai University,2016. [114] 冯奎,王云彪,杨玉梅. 锗晶片磨削用砂轮研究[J]. 电子工业专用设备,2019,48(6):13-15,18. FENG Kui,WANG Yunbiao,YANG Yumei. Study on grinding wheel for germanium wafer grinding[J]. Equipment for Electronic Products Manufacturing,2019,48(6):13-15,18. [115] ITOH K. Vitrifred abrasive solid mass reinforced by impregnation with synthetic resin,and method of manufacturing the same:US,US6093225[P]. 2000-07-25. [116] RAMANATH S,BULJAN S T,WIKSON J R,et al. Porous abrasive tool and method for making the same:US,US6755729[P]. 2004-06-29. [117] MATSUMOTO D,WASLASKE W F,SALE B L. Abrasive tools for grinding electronic components:US,US6394888[P]. 2002-05-28. [118] MIAO W P,DING Y L,ZHAO Y J,et al. Modified gel casting technique to fabricate honeycomb structured vitrified-bonded ultrafine diamond grinding wheels[J]. Ceramics International,2020,46(4):4462-4469. [119] LAWN B R,EVANS A G,MARSHALL D B. Elastic-plastic indentation damage in ceramics-the median-radial crack system[J]. Journal of the American Ceramic Society,1980,63(9-10):574-581. [120] LAMBROPOULOS J C,JACOBS S D,RUCKMAN J. Material removal mechanisms from grinding to polishing[C]//Finishing of Advanced Ceramics and Glasses Symposium held at the 101st Annual Meeting of the American-Ceramic-Society,1999,102:113-128. [121] LI C,ZHANG F H,WU Y Q,et al. Influence of strain rate effect on material removal and deformation mechanism based on ductile nanoscratch tests of Lu2O3 single crystal[J]. Ceramics International,2018,44(17):21486-21498. [122] YIN J F,BAI Q,GOEL S,et al. An analytical model to predict the depth of sub-surface damage for grinding of brittle materials[J]. CIRP Journal of Manufacturing Science and Technology,2021,33:454-464. [123] LI S Y,WANG Z,WU Y L. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes[J]. Journal of Materials Processing Technology,2008,205(1-3):34-41. [124] CHEN J B,FANG Q H,LI P. Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding[J]. International Journal of Machine Tools & Manufacture,2015,91:12-23. [125] 高尚,耿宗超,吴跃勤,等. 石英玻璃超精密磨削加工的表面完整性研究[J]. 机械工程学报,2019,55(5):186-195. GAO Shang,GENG Zongchao,WU Yueqin,et al. Surface integrity of quartz glass induced by ultra-precision grinding[J]. Journal of Mechanical Engineering,2019,55(5):186-195. [126] YAO Z Q,GU W B,LI K M. Relationship between surface roughness and subsurface crack depth during grinding of optical glass BK7[J]. Journal of Materials Processing Technology,2012,212(4):969-976. [127] LI H N,YU T B,ZHU L D,et al. Evaluation of grinding-induced subsurface damage in optical glass bk7[J]. Journal of Materials Processing Technology,2016,229:785-794. [128] LI H N,YU T B,DA ZHU L,et al. Analytical modeling of grinding-induced subsurface damage in monocrystalline silicon[J]. Materials & Design,2017,130:250-262. [129] KANG R K,ZHANG Y X,GUO D M,et al. Study on the surface and subsurface integrity of ground monocrystalline silicon wafers[J]. Key Engineering Materials,2005,291-292:425-432. [130] ZHOU L,TIAN Y B,HUANG H,et al. A study on the diamond grinding of ultra-thin silicon wafers[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2012,226(1):66-75. [131] TIAN Y B,KANG R K,GUO D M,et al. Investigation on material removal rate in rotation grinding for large-scale silicon wafer[J]. Materials Science Forum,2004,471-472:362-368. [132] 高尚.硅片超精密磨削减薄工艺基础研究[D]. 大连:大连理工大学,2013. GAO Shang. Fundamental research on silicon wafer thinning by ultra-precision grinding[D]. Dalian:Dalian University of Technology,2013. [133] 田业冰,郭东明,康仁科,等. 大尺寸硅片自旋转磨削的试验研究[J]. 金刚石与磨料磨具工程,2004,24(4):1-4. TIAN Yebing,GUO Dongming,KANG Renke,et al. Grinding of large size silicon wafer on a wafer-rotating grinding machine[J]. Diamond & Arasives Engineering,2004,24(4):1-4. [134] TÖNSHOFF H K,KARPUSCHEWSKI B,HARTMANN M,et al. Grinding-and-slicing technique as an advanced technology for silicon wafer slicing[J]. Machining Science and Technology,1997,1(1):33-47. [135] TÖNSHOFF H K,V SCHMIEDEN W,INASAKI I,et al. Abrasive machining of silicon[J]. CIRP Annals- Manufacturing Technology,1990,39(2):621-635. [136] TSO P L,TENG C C. A study of the total thickness variation in the grinding of ultra-precision substrates[J]. Journal of Materials Processing Technology,2001,116(2-3):182-188. [137] CHIDAMBARAM S,PEI Z J,KASSIR S. Fine grinding of silicon wafers:a mathematical model for the chuck shape[J]. International Journal of Machine Tools & Manufacture,2003,43(7):739-746. [138] CHEN C A,HSU L. A process model of wafer thinning by diamond grinding[J]. Journal of Materials Processing Technology,2008,201(1-3):606-611. [139] TANG K Y,KANG R K. Simulation on the ground wafer shape in wafer rotational grinding[J]. Journal of Advanced Manufacturing Systems,2011,10(1):175-182. [140] TANG K Y,KANG R K,GUO D M,et al. Modeling and investigation on wafer shape in wafer rotational grinding method[J]. International Journal of Advanced Manufacturing Technology,2013,64(5-8):707-714. [141] 朱祥龙. 300 mm硅片超精密磨床设计与开发[D]. 大连:大连理工大学,2011. ZHU Xianglong. Design and Development of ultra-precision grinder for 300 mm wafer[D]. Dalian:Dalian University of Technology,2011. [142] Disco. DP08 Series[EB/OL].[2023-07-17]. https://www.disco.co.jp/eg/products/dry_wheel/dp08.html [143] KANG R K,ZHANG Y,GAO S,et al. High surface integrity fabrication of silicon wafers using a newly developed nonwoven structured grind-polishing wheel[J]. Journal of Manufacturing Procsses. 2022,77:229-239. [144] GAO S,DONG Z G,KANG R K,et al. Design and evaluation of soft abrasive grinding wheels for silicon wafers[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2013,227(4):578-586. [145] KANG R K,GAO S,JIN Z J,et al. Study on grinding performance of soft abrasive wheel for silicon wafer[C]//Advances in Grinding and Abrasive Technology ХⅤ,2009,416:529-534. [146] ZHOU L,SHIMIZU J,EDA H. A novel fixed abrasive process:Chemo-mechanical grinding technology[J]. International Journal of Manufacturing Technology and Management,2005,7(5-6):441-454. [147] HUANG H,WANG B L,WANG Y,et al. Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2008,479(1-2):373-379. [148] YUAN J L,WANG Z W,HONG T,et al. A semi-fixed abrasive machining technique[J]. Journal of Micromechanics and Microengineering,2009,19(0540065). [149] 赵萍,王志伟,袁巨龙. 半固着磨具"陷阱"效应影响因素分析[J]. 中国机械工程,2011,22(20):2399-2403. ZHAO Ping,WANG Zhiwei,YUAN Julong. Analysis for 'trap' effect influence factors of semi-fixed abrasive plate[J]. China Mechanical Engineering,2011,22(20):2399-2403. [150] 杨翊. 半固着磨具物理特性及加工性能的实验研究[D]. 杭州:浙江工业大学,2009. YANG Yi. Research on the characteristic and the process performance of semi-fixed abrasive plate[D]. Hangzhou:Zhejiang University of Technology,2009. [151] WANG C C,ZHANG F L,PAN J S,et al. An experimental study on preparation of vitrified bond diamond grinding wheel with hollow spherical corundum granules as pore former[J]. International Journal of Advanced Manfacturing Technology,2017,93(1-4):595-603. [152] 徐西鹏,刘娟,于怡青,等. 凝胶结合剂磨粒工具制备及其磨抛性能研究[J]. 机械工程学报,2013,49(19):156-162. XU Xipeng,LIU Juan,YU Yiqing,et al. Fabrication and application of gel-bonded abrasive tools for grinding and polishing tools[J]. Journal of Mechanical Engineering,2013,49(19):156-162. [153] LUO Q F,LU J,XU X P. A comparative study on the material removal mechanisms of 6H-SiC polished by semi-fixed and fixed diamond abrasive tools[J]. Wear. 2016,350-351:99-106. [154] XU Y C,LU J,XU X P,et al. Study on high efficient sapphire wafer processing by coupling SG-mechanical polishing and GLA-CMP[J]. International Journal of Machine Tools & Manufacture. 2018,130:12-19. [155] HU G Q,LU J,XU X P. Polishing silicon wafers with the nanodiamond abrasive tools prepared by Sol-Gel technique[J]. Precision Machining VI. 2012,496:1-6. [156] DISCO. Product information[EB/OL].[2023-07-17]. https://www.disco.co.jp/eg/products/index.html?id=grinding. [157] ACCRETECH. High rigid grinder:HRG3000RMX[EB/OL].[2023-07-17]. https://www.accretech.jp/english/product/semicon/highrigid_grinder/hrg3000rmx.html. [158] OKAMOTO. GNX300B[EB/OL].[2023-07-17]. https://www.okamoto.co.jp/backgrinder#ttl-GNX200B. [159] KOYO. R631DF[EB/OL].[2023-07-17]. https://www.machine.jtekt.co.jp/chinese/product/machine/. [160] DISCO. DFG8830[EB/OL].[2023-07-17]. https://www.disco.co.jp/eg/products/grinder/dfg8830.html [161] ACCRETECH. Fully automatic high rigid twin axis grinder:HRG200X[EB/OL].[2023-07-17]. https://www.accretech.jp/english/product/semicon/highrigid_grinder/hrg200x.html. [162] ACCRETECH. High rigid grinder:HRG300/HRG300A[EB/OL].[2023-07-17]. https://www.accretech.jp/english/product/semicon/highrigid_grinder/hrg300.html. [163] 中国电子科技集团公司第四十五研究所. WG系列晶圆减薄机[EB/OL].[2023-07-17]. http://www.45inst.com/product/172.html. THE 45TH RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPOPATION. WG series wafer thinning machine[EB/OL].[2023-07-17]. http://www.45inst.com/product/172.html. [164] HWATSING. Versatile-GM300[EB/OL].[2023-07-17]. http://huahai.mfweb.club/product_detail/16.html. [165] CIOE. TFG-3200[EB/OL].[2023-07-17]. https://exhibitors.cioe.cn/jtycn/cp20663.html. [166] 无锡市锡山区半导体先进制造创新中心. CMG200[EB/OL].[2023-07-17]. http://www.asmic. cn/ProductDetail/6658758.html. DISTRICT SEMICONDUCTOR ADVANCED MANUFACTURING INNOVATION CENTER,XISHAN,WUXI.CMG200[EB/OL].[2023-07-17]. http://www.asmic.cn/ProductDetail/6658758.html. [167] MAXWELL. MX-SSG1A[EB/OL]. https://www.maxwell-gp.com/products_52/. |
[1] | 苏志朋, 梁志强, 李娟, 王飞, 魏正义, 刘月红, 金惟薇, 马悦, 殷振, 王西彬. 钛合金微槽超声螺线辅助铣磨加工试验研究[J]. 机械工程学报, 2024, 60(9): 5-12. |
[2] | 武韩强, 陈卓, 叶曦珉, 张诗博, 李偲偲, 曾江, 汪强, 吴勇波. 钛合金超声辅助等离子体氧化改性磨削基本加工特性研究[J]. 机械工程学报, 2024, 60(9): 13-25. |
[3] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[4] | 殷振, 张坤, 戴晨伟, 程敬彩, 徐海龙, 李华. 超声椭圆振动磨削SiC陶瓷的砂轮磨损与磨削性能研究[J]. 机械工程学报, 2024, 60(9): 57-74. |
[5] | 梁奉爽, 吴明阳, 刘立飞. 基于材料冲击特性的碳化硅超声磨削机理及亚表面损伤特征研究[J]. 机械工程学报, 2024, 60(9): 75-85. |
[6] | 陈守峰, 王成勇, 李伟秋, 丁峰, 卢耀安, 周玉海. 超声振动铣削加工石墨材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 86-96. |
[7] | 李继成, 陈广俊, 许金凯, 于化东. C/SiC复合材料激光超声复合微切削材料损伤机理与表面质量研究[J]. 机械工程学报, 2024, 60(9): 189-205. |
[8] | 李晗, 章程, 陈杰, 安庆龙, 陈明. SiCf/SiC复合材料激光烧蚀辅助铣削材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 206-217. |
[9] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[10] | 王晓铭, 李长河, 杨敏, 张彦彬, 刘明政, 高腾, 崔歆, 王大中, 曹华军, 陈云, 刘波. 纳米生物润滑剂微量润滑加工物理机制研究进展[J]. 机械工程学报, 2024, 60(9): 286-322. |
[11] | 崔歆, 李长河, 张彦彬, 杨敏, 周宗明, 刘波, 王春锦. 磁力牵引纳米润滑剂微量润滑磨削力模型与验证[J]. 机械工程学报, 2024, 60(9): 323-337. |
[12] | 关集俱, 祝正兵, 徐正亚, 栾志强, 许雪峰. CNTs@T321微囊制备的纳米流体与砂轮磨削时的双重润滑增效机制[J]. 机械工程学报, 2024, 60(9): 351-363. |
[13] | 何喆, 黄新春, 宋艺辉, 史耀耀, 张兆顷, 史恺宁. 服役温度影响的DD6单晶高温合金磨削/喷丸加工表面完整性演化规律研究[J]. 机械工程学报, 2024, 60(9): 410-420. |
[14] | 秦光林, 崔长彩, 尹方辰, 黄辉. 面向复杂立体石雕的机器人面扫描视点规划[J]. 机械工程学报, 2024, 60(8): 22-33. |
[15] | 张禹森, 陈雷, 刘胜杰, 胡峻华, 张启飞, 崔明亮, 胡建良, 金淼. TB6钛合金模锻件低倍组织局部粗晶形成机理及预测[J]. 机械工程学报, 2024, 60(8): 121-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||