机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 277-298.doi: 10.3901/JME.2023.19.277
肖勇1,2, 王洋1,2, 赵宏刚1,2, 郁殿龙1,2, 温激鸿1,2
收稿日期:
2023-06-01
修回日期:
2023-09-21
出版日期:
2023-10-05
发布日期:
2023-12-11
通讯作者:
肖勇(通信作者),男,1983年出生,博士,研究员,博士研究生导师。主要研究方向为振动与噪声控制、声学超构材料理论与应用、机电系统动力学与控制。E-mail:xiaoy@vip.sina.com;温激鸿(通信作者),男,1971年出生,博士,研究员,博士研究生导师。主要研究方向为振动与噪声控制、声学超构材料理论与应用。E-mail:wenjihong@vip.sina.com
基金资助:
XIAO Yong1,2, WANG Yang1,2, ZHAO Honggang1,2, YU Dianlong1,2, WEN Jihong1,2
Received:
2023-06-01
Revised:
2023-09-21
Online:
2023-10-05
Published:
2023-12-11
摘要: 声学超构材料是由阵列化的人工微结构单元构筑的复合声学材料/结构。通过对声学超构材料中的微结构单元及其排布方式进行调控设计,可以实现对声波/弹性波(可视为固体中的声波)的人为高效操控,使其表现出超常的减振降噪性能及优势。当前,声学超构材料研究已成为机械工程、声学、力学、材料学、物理学等多学科交叉领域关注的热点方向。针对机械工程领域关注的装备振动与噪声控制技术背景,重点综述面向减振降噪应用的声学超构材料研究进展,分别从减振、隔声、吸声等功能应用需求出发,回顾国内外相关声学超构材料的研究进展,并指出当前研究不足,展望未来发展趋势,为推动声学超构材料在减振降噪领域的应用提供借鉴和参考。
中图分类号:
肖勇, 王洋, 赵宏刚, 郁殿龙, 温激鸿. 面向减振降噪应用的声学超构材料研究进展[J]. 机械工程学报, 2023, 59(19): 277-298.
XIAO Yong, WANG Yang, ZHAO Honggang, YU Dianlong, WEN Jihong. Research Progress of Acoustic Metamaterials for Vibration and Noise Reduction Applications[J]. Journal of Mechanical Engineering, 2023, 59(19): 277-298.
[1] 温激鸿,蔡力,郁殿龙,等. 声学超材料基础理论与应用[M]. 北京:科学出版社,2018. WEN Jihong,CAI Li,YU Dianlong,et al. Basic theory and application of acoustic metamaterials[M]. Beijing:Science Press,2018. [2] 肖勇. 局域共振型结构的带隙调控与减振降噪特性研究[D]. 长沙:国防科学技术大学,2012. XIAO Yong. Locally resonant structures:band gap tuning and properties of vibration and noise reduction[D]. Changsha:National University of Defense Technology,2012. [3] LIU Zhengyou,ZHANG Xixiang,MAO Yiwei,et al. Locally resonant sonic materials[J]. Science, 2000,289(5485):1734-1736. [4] LI J,CHAN C T. Double-negative acoustic metamaterial[J]. Physical Review E, 2004,7:055602(R). [5] SIGALAS M M,ECONOMOU E N. Elastic and acoustic wave band structure[J]. Journal of Sound and Vibration,1992,158(2):377-382. [6] KUSHWAHA M S,HALEVI P,DOBRZYNSKI L,et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters,1993,71(13):2022-2025. [7] 温熙森,温激鸿,郁殿龙,等. 声子晶体[M]. 北京:国防工业出版社,2009. WEN Xisen,WEN Jihong,YU Dianlong,et al. Phononic crystals[M]. Beijing:National Defence Industry Press,2009. [8] WANG Gang,WEN Xisen,WEN Jihong,et al. Quasi-one-dimensional periodic structure with locally resonant band gap[J]. Journal of Applied Mechanics,2006,73(1):167-170. [9] WANG Gang,WEN Jihong,WEN Xisen. Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method:application to locally resonant beams with flexural wave band gap[J]. Physical Review B,2005,71(10):104302. [10] YU Dianlong,LIU Yaozong,WANG Gang, et al. Flexural vibration band gaps in Timoshenko beams with locally resonant structures[J]. Journal of Applied Physics,2006,100(12):124901. [11] YU Dianlong,LIU Yaozong,ZHAO Honggang,et al. Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom[J]. Physical Review B, 2006,73(6):064301. [12] 王刚. 声子晶体局域共振带隙机理及减振特性研究[D]. 长沙:国防科学技术大学,2005. WANG Gang. Research on the mechanism and the vibration attenuation characteristic of locally resonant band gap in phononic crystals[D]. Changsha:National University of Defense Technology,2005. [13] YU Dianlong,WANG Gang,LIU Yaozong,et al. Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures.[J]. Chinese Physics,2006,15(2):266-271. [14] YU Dianlong,LIU Yaozong,QIU Jing,et al. Experimental and theoretical research on the vibrational gaps in two-dimensional three-component composite thin plates[J]. Chinese Physics Letters,2005,22(8):1958-1960. [15] WU T,HUANG Zigui,TSAI T,et al. Evidence of complete band gap and resonances in a plate with periodic stubbed surface[J]. Applied Physics Letters,2008,93(11):111902. [16] PENNEC Y,DJAFARI-ROUHANI B,LARABI H,et al. Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate[J]. Physical Review B,2008,78(10):104105. [17] OUDICH M,LI Y,ASSOUAR B M,et al. A sonic band gap based on the locally resonant phononic plates with stubs[J]. New Journal of Physics,2010,12(8):083049. [18] ASSOUAR M B,OUDICH M. Enlargement of a locally resonant sonic band gap by using double-sides stubbed phononic plates[J]. Applied Physics Letters,2012,100(12):123506. [19] ASSOUAR M B,SENESI M,OUDICH M,et al. Broadband plate-type acoustic metamaterial for low-frequency sound attenuation[J]. Applied Physics Letters,2012,101(17):173505. [20] WANG Gang,WEN Xisen,WEN Jihong,et al. Two-dimensional locally resonant phononic crystals with binary structures[J]. Physical Review Letters,2004,93(15):154302. [21] XIAO Yong,WEN Jihong,WEN Xisen. Broadband locally resonant beams containing multiple periodic arrays of attached resonators[J]. Physics Letters A,2012,376(16):1384-1390. [22] XIAO Yong,WEN Jihong,WEN Xisen. Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators[J]. New Journal of Physics,2012,14(3):033042. [23] ZHU Rui,LIU Xiaoning HU Gengkai,et al. A chiral elastic metamaterial beam for broadband vibration suppression[J]. Journal of Sound and Vibration,2014,333(10):2759-2773. [24] ZHOU Jiaxi,WANG Kai,XU Daolin,et al. Multi-low-frequency flexural wave attenuation in Euler-Bernoulli beams using local resonators containing negative-stiffness mechanisms[J]. Physics Letters A,2017,381(37):3141-3148. [25] MENG H,CHRONOPOULOS D,FABRO A T,et al. Rainbow metamaterials for broadband multi-frequency vibration attenuation:numerical analysis and experimental validation[J]. Journal of Sound and Vibration,2020,465:115005. [26] HU Guobiao,AUSTIN A C M,SOROKIN V,et al. Metamaterial beam with graded local resonators for broadband vibration suppression[J]. Mechanical Systems and Signal Processing,2021,146:106982. [27] MIRANDA JR E J P,DOS SANTOS J M C. Flexural wave band gaps in multi-resonator elastic metamaterial Timoshenko beams[J]. Wave Motion,2019,91:102391. [28] MIRANDA JR E J P,NOBREGA E D,FERREIRA A H R,et al. Flexural wave band gaps in a multi-resonator elastic metamaterial plate using Kirchhoff-Love theory[J]. Mechanical Systems and Signal Processing,2019,116:480-504. [29] XIAO Yong,MACE B R,WEN Jihong,et al. Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators[J]. Physics Letters A,2011,375(12):1485-1491. [30] XIAO Yong,WEN Jihong,YU Dianlong,et al. Flexural wave propagation in beams with periodically attached vibration absorbers:band-gap behavior and band formation mechanisms[J]. Journal of Sound and Vibration,2013,332(4):867-893. [31] XIAO Yong,WEN Jihong,WANG Gang,et al. Theoretical and experimental study of locally resonant and bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators[J]. Journal of Vibration and Acoustics,2013,135:041006. [32] LI Yongqiang,XIAO Yong,GUO Jiajia,et al. Single-phase metabeam for three-directional broadband vibration suppression[J]. International Journal of Mechanical Sciences,2022,234:107683. [33] XIAO Yong,WEN Jihong,WEN Xisen. Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators[J]. Journal of Physics D:Applied Physics,2012,45(19):195401. [34] 朱席席,肖勇,温激鸿,等. 局域共振型加筋板的弯曲波带隙与减振特性[J]. 物理学报,2016,65(17) 176202. ZHU Xixi,XIAO Yong,WEN Jihong,et al. Flexural wave band gaps and vibration reduction properties of a locally resonant stiffened plate[J]. Acta Physica Sinica,2016,65(17):76202. [35] XIAO Yong,WEN Jihong,HUANG Lingzhi, et al. Analysis and experimental realization of locally resonant phononic plates carrying a periodic array of beam-like resonators[J]. Journal of Physics D:Applied Physics,2014,47(4):045307. [36] KRUSHYNSKA A O,MINIACI M,BOSIA F,et al. Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials[J]. Extreme Mechanics Letters,2017,12:30-36. [37] XIAO Yong,WEN Jihong. Closed-form formulas for bandgap estimation and design of metastructures undergoing longitudinal or torsional vibration[J]. Journal of Sound and Vibration,2020,485:115578. [38] XIAO Yong,WANG Shuaixing,LI Yongqiang,et al. Closed-form bandgap design formulas for beam-type metastructures[J]. Mechanical Systems and Signal Processing,2021,159:107777. [39] GUO Jiajia,LI Yongqiang,XIAO Yong,et al. Multiscale modeling and design of lattice truss core sandwich metastructures for broadband low-frequency vibration reduction[J]. Composite Structures,2022,289:115463. [40] YILMAZ C,HULBERT G M,KIKUCHI N. Phononic band gaps induced by inertial amplification in periodic media[J]. Physical Review B,2007,76(5):054309. [41] ACAR G,YILMAZ C. Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures[J]. Journal of Sound and Vibration,2013,332(24):6389-6404. [42] TANIKER S,YILMAZ C. Design,analysis and experimental investigation of three-dimensional structures with inertial amplification induced vibration stop bands[J]. International Journal of Solids and Structures,2015,72:88-97. [43] YUKSEL O,YILMAZ C. Realization of an ultrawide stop band in a 2-D elastic metamaterial with topologically optimized inertial amplification mechanisms[J]. International Journal of Solids and Structures,2020,203:138-150. [44] FRANDSEN N M M,BILAL O R,JENSEN J S,et al. Inertial amplification of continuous structures:Large band gaps from small masses[J]. Journal of Applied Physics,2016,119(12):124902. [45] LI Jingru,LI Sheng. Generating ultra wide low-frequency gap for transverse wave isolation via inertial amplification effects[J]. Physics Letters A,2018,382(5):241-247. [46] BARYS M,JENSEN J S,FRANDSEN N M M. Efficient attenuation of beam vibrations by inertial amplification[J]. European Journal of Mechanics-A/Solids,2018,71:245-257. [47] LI Jingru,YANG Peng,LI Sheng. Phononic band gaps by inertial amplification mechanisms in periodic composite sandwich beam with lattice truss cores[J]. Composite Structures,2020,231:111458. [48] XI Chenyang,DOU Lingling,MI Yongzhen,et al. Inertial amplification induced band gaps in corrugated-core sandwich panels[J]. Composite Structures,2021,267:113918. [49] NESTERENKO V F. Propagation of nonlinear compression pulses in granular media[J]. Journal of Applied Mechanics and Technical Physics,1983,24:733-743. [50] DARAIO C,NESTERENKO V F,HERBOLD E B,et al. Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals[J]. Physical Review E,2006,73:026610. [51] DARAIO C,NESTERENKO V F,HERBOLD E B,et al. Strongly nonlinear waves in a chain of Teflon beads[J]. Physical Review. E,72:016603. [52] FANG Xin,WEN Jihong,BONELLO B,et al. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials[J]. Nature Communications,2017,8(1):1288. [53] FANG Xin,WEN Jihong,YU Dianlong,et al. Bridging-coupling band gaps in nonlinear acoustic metamaterials[J]. Physical Review Applied,2018,10(5):054049. [54] SHENG Peng,FANG Xin,WEN Jihong,et al. Vibration properties and optimized design of a nonlinear acoustic metamaterial beam[J]. Journal of Sound and Vibration,2021,492:115739. [55] YANG Z,DAI H M,CHAN N H,et al. Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[J]. Applied Physics Letters,2010,96(4):041906. [56] YANG Z,MEI Jun,YANG Min,et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters,2008,101(20):204301. [57] XIAO Yong,WEN Jihong,WEN Xisen. Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators[J]. Journal of Sound and Vibration,2012,331(25):5408-5423. [58] HASHIMOTO N,KATSURA M,YASUOKA M,et al. Sound insulation of a rectangular thin membrane with additional weights[J]. Applied Acoustics,1991,33(1):21-43. [59] VARANASI S,BOLTON J S,SIEGMUND T H,et al. The low frequency performance of metamaterial barriers based on cellular structures[J]. Applied Acoustics,2013,74(4):485-495. [60] VARANASI S,BOLTON J S,SIEGMUND T. Experiments on the low frequency barrier characteristics of cellular metamaterial panels in a diffuse sound field[J]. The Journal of the Acoustical Society of America,2017,141(1):602-610. [61] WANG Xiaoloe,ZHAO Hui,LUO Xudong,et al. Membrane-constrained acoustic metamaterials for low frequency sound insulation[J]. Applied Physics Letters,2016,108:041905. [62] XIAO Yong,CAO Jianzhi,WANG Shuaixing,et al. Sound transmission loss of plate-type metastructures:semi-analytical modeling,elaborate analysis,and experimental validation[J]. Mechanical Systems and Signal Processing,2021,153:107487. [63] 王帅星,肖勇,汤晏宁,等. 轻质超材料板结构的隔声机理及调控规律[J]. 机械工程学报,2023,59(15):94-109. WANG Shuaixing,XIAO Yong,TANG Yanning,et al. Sound insulation mechanisms and behavior of lightweight metamaterial plate[J]. Journal of Mechanical Engineering,2023,59(15):94-109. [64] LANGFELDT F,GLEINE W. Plate-type acoustic metamaterials with strip masses[J]. The Journal of the Acoustical Society of America,2021,149(6):3727-3738. [65] SONG Yubao,FENG Leping,WEN Jihong,et al. Reduction of the sound transmission of a periodic sandwich plate using the stop band concept[J]. Composite Structures,2015,128:428-436. [66] Van BELLE L,CLAEYS C,DECKERS E,et al. The impact of damping on the sound transmission loss of locally resonant metamaterial plates[J]. Journal of Sound and Vibration,2019,461:114909. [67] PIRES F A,WANDEL M,THOMAS C,et al. Improve sound transmission loss of an aircraft's lining panel by the use of locally resonant metamaterials[C]//Belgium:Proceedings of ISMA-USD,2022. [68] DROZ C,ROBIN O,ICHCHOU M,et al. Improving sound transmission loss at ring frequency of a curved panel using tunable 3D-printed small-scale resonators[J]. The Journal of the Acoustical Society of America,2019,145(1):EL72-EL78. [69] De MELO FILHO N G R,CLAEYS C,DECKERS E, et al. Realisation of a thermoformed vibro-acoustic metamaterial for increased STL in acoustic resonance driven environments[J]. Applied Acoustics,2019,156:78-82. [70] ZHANG Hao,WEN Jihong,XIAO Yong,et al. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches[J]. Journal of Sound and Vibration,2015,343:104-120. [71] ZHANG Hao,XIAO Yong,WEN Jihong,et al. Ultra-thin smart acoustic metasurface for low-frequency sound insulation[J]. Applied Physics Letters,2016,108:141902. [72] ZHANG Hao,CHEN Shengbing,LIU Zongzheng,et al. Light-weight large-scale tunable metamaterial panel for low-frequency sound insulation[J]. Applied Physics Express,2020,13(6):67003. [73] WANG Xiaopeng,CHEN Yongyong,ZHOU Guojian,et al. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation[J]. Journal of Sound and Vibration,2019,459:114867. [74] LANGFELDT F,GLEINE W. Optimizing the bandwidth of plate-type acoustic metamaterials[J]. The Journal of the Acoustical Society of America,2020,148(3):1304-1314. [75] De MELO FILHO N G R,CLAEYS C,DECKERS E,et al. Metamaterial foam core sandwich panel designed to attenuate the mass-spring-mass resonance sound transmission loss dip[J]. Mechanical Systems and Signal Processing,2020,139:106624. [76] LANGFELDT F,HOPPEN H,GLEINE W. Broadband low-frequency sound transmission loss improvement of double walls with Helmholtz resonators[J]. Journal of Sound and Vibration,2020,476:115309. [77] WANG Shuaixing,XIAO Yong,GU Jintao, et al. Double-panel metastructure lined with porous material for broadband low-frequency sound insulation[J]. Applied Acoustics,2023,207:109332. [78] WANG Shuaixing,XIAO Yong,GUO Jiajia,et al. Broadband diffuse field sound insulation of double layer metamaterial plates lined with porous material[J]. Applied Physics Letters,2021,119(8):084103. [79] De MELO FILHO N G R,Van BELLE L,CLAEYS C,et al. Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterial double panels applied to the mass-air-mass resonance[J]. Journal of Sound and Vibration,2019,442:28-44. [80] MEI Jun,MA Guancong,YANG Min,et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature Communications,2012,3:756. [81] MA Guancong,YANG Min,XIAO Songwen,et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials,2014,13:873. [82] CHEN Yangyang,HUANG Guoliang,ZHOU Xiaoming,et al. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials:membrane model[J]. The Journal of the Acoustical Society of America,2014,136(3):969-979. [83] CHEN Yangyang,HUANG Guoliang,ZHOU Xiaoming,et al. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials:plate model[J]. The Journal of the Acoustical Society of America,2014,136(6):2926-2934. [84] YANG Min,MA Guangcong,YANG Zhiyu,et al. Subwavelength perfect acoustic absorption in membrane-type metamaterials:a geometric perspective[J]. EPJ Applied Metamaterials,2015,2:10. [85] CAI Xiaobing,GUO Qiuquan,HU Gengkai,et al. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators[J]. Applied Physics Letters,2014,105:121901. [86] LIU Liu,CHANG Huiting,ZHANG Chi,et al. Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth[J]. Applied Physics Letters,2017,111(8):083503. [87] ZHANG Chi,HU Xinhua. Three-dimensional Single-port labyrinthine acoustic metamaterial:perfect absorption with large bandwidth and tunability[J]. Physical Review Applied,2016,6(6):064025. [88] CHANG Huiting,LIU Liu,ZHANG Chi,et al. Broadband high sound absorption from labyrinthine metasurfaces[J]. AIP Advances,2018,8(4):045115. [89] YANG Min,CHEN Shuyu,FU Caixing,et al. Optimal sound-absorbing structures[J]. Materials Horizons,2017,4(4):673-680. [90] 王洋. 空间折叠超材料低频吸声研究[D]. 长沙:国防科技大学,2018. WANG Yang. Low-frequency sound absorption of metamaterials with coiled-up space[D]. Changsha:National University of Defense Technology,2018. [91] LI Yong,ASSOUAR B M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness[J]. Applied Physics Letters,2016,108(6):063502. [92] WANG Yang,ZHAO Honggang,YANG Haibin,et al. A space-coiled acoustic metamaterial with tunable low-frequency sound absorption[J]. Europhysics Letters,2017,120(5):54001. [93] WANG Yang,ZHAO Honggang,YANG Haibin,et al. A tunable sound-absorbing metamaterial based on coiled-up space[J]. Journal of Applied Physics,2018,123(18):185109. [94] RYOO H,JEON W. Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence[J]. Journal of Applied Physics,2018,123(11):115110. [95] JIMÉNEZ N,HUANG W,ROMERO-GARCÍA V,et al. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption[J]. Applied Physics Letters,2016,109(12):121902. [96] JIMÉNEZ N,ROMERO-GARCÍA V,PAGNEUX V,et al. Rainbow-trapping absorbers:broadband,perfect andasymmetric sound absorption by subwavelength panels for transmission problems[J]. Scientific Reports,2017,7(1):13595. [97] TANG Yufan,REN Shuwei,MENG Han,et al. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound[J]. Scientific Reports,2017,7(1):43340. [98] SHAO Chen,ZHU Yuanzhou,LONG Houyou,et al. Metasurface absorber for ultra-broadband sound via over-damped modes coupling[J]. Applied Physics Letters,2022,120(8):083504. [99] ZHOU Zhiling,HUANG Sibo,LI Dongting,et al. Broadband impedance modulation via non-local acoustic metamaterials[J]. National Science Review,2022,9(8):nwab171. [100] WU Fei,XIAO Yong,YU Dianlong,et al. Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels[J]. Applied Physics Letters,2019,114(15):151901. [101] WU Fei,ZHANG Xiao,JU Zegang,et al. Ultra-broadband sound absorbing materials based on periodic gradient impedance matching[J]. Frontiers in Materials,2022,9:909666. [102] ZHAO Honggang,WANG Yang,YU Dianlong,et al. A double porosity material for low frequency sound absorption[J]. Composite Structures,2020,239:111978. [103] GROBY J P,DAZEL O,DUCLOS A,et al. Enhancing the absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions[J]. The Journal of the Acoustical Society of America,2011,130(6):3771-3780. [104] GROBY J P,LAGARRIGUE C,BROUARD B,et al. Using simple shape three-dimensional rigid inclusions to enhance porous layer absorption[J]. The Journal of the Acoustical Society of America,2014,136(3):1139-1148. [105] LAGARRIGUE C,GROBY J P,TOURNAT V,et al. Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions[J]. The Journal of the Acoustical Society of America,2013,134(6):4670-4680. [106] LAGARRIGUE C,GROBY J P,DAZEL O,et al. Design of metaporous supercells by genetic algorithm for absorption optimization on a wide frequency band[J]. Applied Acoustics,2016,102:49-54. [107] YANG J,LEE J S,KIM Y Y. Metaporous layer to overcome the thickness constraint for broadband sound absorption[J]. Journal of Applied Physics,2015,117(17):174903. [108] YANG J,LEE J S,KIM Y Y. Multiple slow waves in metaporous layers for broadband sound absorption[J]. Journal of Physics D:Applied Physics,2017,50:015301. [109] GAO Nansha,ZHANG Zhicheng. Optimization design and experimental verification of composite absorber with broadband and high efficiency sound absorption[J]. Applied Acoustics,2021,183:108288. [110] ZHANG Hongjia,WANG Yang,ZHAO Honggang,et al. Accelerated topological design of metaporous materials of broadband sound absorption performance by generative adversarial networks[J]. Materials & Design,2021,207:109855. |
[1] | 张行, 富宽, 陈铭浩, 李睿, 石新娜. 压差式多节串联管道机器人越障时动力学演化规律及减振分析[J]. 机械工程学报, 2024, 60(8): 348-359. |
[2] | 徐丰羽, 马凯威, 宋巨龙, 范保杰, 武新军. 基于弹簧-磁流变阻尼器的拉索攀爬机器人减振机构及控制方法[J]. 机械工程学报, 2024, 60(8): 384-395. |
[3] | 钟杰, 管峰, 杨海滨, 赵宏刚, 温激鸿. 水声吸声尖劈的低频吸声特性及其背衬影响规律[J]. 机械工程学报, 2024, 60(5): 142-156. |
[4] | 马召召, 周瑞平, 杨庆超, LEE Heow Pueh, 柴凯. 含电磁分流阻尼双层准零刚度隔振系统的动力学特性分析[J]. 机械工程学报, 2024, 60(5): 157-168. |
[5] | 冯勇, 周豪杰, 周智远, 贾晓林, 秦育彦, 徐伟伟. 低频扭转振动辅助螺旋铣孔切削力模型研究[J]. 机械工程学报, 2024, 60(5): 390-402. |
[6] | 冯青松, 杨舟, 郭文杰. 基于振幅放大机制的周期钢弹簧浮置板轨道结构低频振动控制[J]. 机械工程学报, 2024, 60(3): 155-169. |
[7] | 张鑫, 池茂儒, 罗贇, 代亮成. 二系垂向多功能减振器对铁道车辆动力学的影响研究[J]. 机械工程学报, 2024, 60(18): 258-265. |
[8] | 姚丹, 张捷, 王瑞乾, 肖新标. 阻尼处理对铝型材结构隔声特性的影响分析[J]. 机械工程学报, 2024, 60(18): 299-309. |
[9] | 任君临, 李强, 任尊松, 杨广雪. 高速动车组减振器载荷特征研究[J]. 机械工程学报, 2023, 59(2): 169-176. |
[10] | 王帅星, 肖勇, 汤晏宁, 吴健, 滕万秀, 温激鸿. 轻质超材料板结构的隔声机理及调控规律[J]. 机械工程学报, 2023, 59(15): 94-109. |
[11] | 陶桂东, 王文静, 冯永华, 李广全. 基于线路实测载荷的转向架构架台架试验方法研究[J]. 机械工程学报, 2023, 59(14): 213-221. |
[12] | 邹广平, 柳天增, 吴松阳, 张冰, 唱忠良, 王宣. 基于幂级数与椭圆方程的金属丝网橡胶组合减振器动态迟滞模型[J]. 机械工程学报, 2023, 59(10): 106-116. |
[13] | 汪步云, 彭稳, 梁艺, 程军, 胡汉春, 许德章. 全地形移动机器人悬架机构设计及特性分析[J]. 机械工程学报, 2022, 58(9): 71-86. |
[14] | 邬奇睿, 祁孟盂, 周信, 王安斌. 弹性车轮对地铁直线段轨道减振特性研究[J]. 机械工程学报, 2022, 58(22): 395-405. |
[15] | 李琦, 许亚坤, 庄新村, 赵震. QP钢低频振动辅助拉伸力学行为与微观组织演变研究[J]. 机械工程学报, 2022, 58(20): 242-249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||