[1] ZHANG Shizhong,GAN Xueping,CHENG Jinjuan,et al. Effect of applied load on transition behavior of wear mechanism in Cu-15Ni-8Sn alloy under oil lubrication[J]. Journal of Central South University,2017,24(8):1754-1761. [2] YIN Bing,YIN Yansheng,LEI Yanhua,et al. Experimental and density functional studies on the corrosion behavior of the copper-nickel-tin alloy[J]. Chemical Physics Letters,2011,509(4):192-197. [3] 付小静,李瑞川,高建国,等. 在甘油润滑下TiAlN涂层的超低摩擦和磨损特性[J].中国表面工程,2021,34(5):198-205. FU Xiaojing,LI Ruichuan,GAO Jianguo,et al. Ultralow friction and wear properties of TiAlN coatings lubricated by glycerol[J]. China Surface Engineering,2021,34(5):198-205. [4] CHENG Jinjuan,ZHANG Shizhong,GAN Xueping,et al. Wear regime and wear mechanism map for spark-plasma-sintered Cu-15ni-8Sn-0.2Nb alloy under oil lubrication[J]. Journal of Materials Engineering and Performance,2019,28(7):4187-4196. [5] LI Yi,ZHANG Songwei,DING Qi,et al. The corrosion and lubrication properties of 2-mercaptobenzothiazole functionalized ionic liquids for bronze[J]. Tribology International,2017,114:121-131. [6] CAI Mingrong,LIANG Yongmin,ZHOU Feng,et al. Anticorrosion imidazolium ionic liquids as the additive in poly (ethylene glycol) for steel/Cu-Sn alloy contacts[J]. Faraday Discuss,2012,156:147-157. [7] ESPINOSA T,SANES J,JIMENEZ A E,et al. Protic ammonium carboxylate ionic liquid lubricants of OFHC copper[J]. Wear,2013,303:495-509. [8] RIVERA N,GARCÍA A,FERNÁNDEZ-GONZÁLEZ A,et al. Tribological behavior of three fatty acid ionic liquids in the lubrication of different material pairs[J]. Journal of Molecular Liquids,2019,296:111858-111869. [9] ZHAI Wenzheng,LU Wenlong,LIU Xiaojun,et al. Nanodiamond as an effective additive in oil to dramatically reduce friction and wear for fretting steel/copper interfaces[J]. Tribology International,2019,129:75-81. [10] 胡建军,赵雪,郭宁,等. 40Cr钢表面包埋渗Mo涂层组织及摩擦性能[J]. 中国表面工程,2021,34(1):60-69. HU Jianjun,ZHAO Xue,GUO Ning,et al. Microstructure and tribological properties of Mo-coating prepared by pack-cementation on 40Cr steel[J]. China Surface Engineering,2021,34(1):60-69. [11] GULZAR M,MASJUKI H H,VARMAN M,et al. Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles[J]. Tribology International,2015,88:271-279. [12] 刘永强,张栋,李锋. 有机硅酸盐对45钢和灰铸铁HT150摩擦性能的影响[J]. 机械工程学报,2006,42(4):236-238. LIU Yongqiang,ZHANG Dong,LI Feng. Effects of organic silicate on the friction performance of 45 steel/HT150 pair[J]. Journal of Mechanical Engineering,2006,42(4):236-238. [13] 尹艳丽,于鹤龙,王红美,等. 蛇纹石矿物作为润滑油添加剂对锡青铜摩擦学行为的影响[J]. 摩擦学学报,2020,40(4):516-525. YIN Yanli,YU Helong,WANG Hongmei,et al. Effect of serpentine mineral as a lubricant additive on the tribological behaviors of tin bronze[J]. Tribology,2020,40(4):516-525. [14] YIN Yanli,YU Helong,WANG Hongmei,et al. Friction and wear behaviors of steel/bronze tribopairs lubricated by oil with serpentine natural mineral additive[J]. Wear,2020,456-457:203387. [15] 张保森. 基于亚稳态蛇纹石矿物的自修复材料制备及摩擦学机理研究[D]. 上海:上海交通大学,2011. ZHANG Baosen. Preparation of self-reconditioning materials based on metastable serpentine mineral and investigation on their tribology mechanisms[D]. Shang hai:Shanghai Jiao Tong University,2011. [16] 王利民. 纳米凹凸棒石的摩擦学性能及自修复机理研究[D]. 哈尔滨:哈尔滨工程大学,2015. WANG Limin. The research on tribological properties and self-reconditioning mechanics of nano-attapulgite[D]. Harbin:Harbin Engineering University,2015. [17] JIA Xiaohua,HUANG Jian,LI Yong,et al. Monodisperse Cu nanoparticles@MoS2 nanosheets as a lubricant additive for improved tribological properties[J]. Applied Surface Science,2019,494:430-439. [18] NAN Feng,XU Yi,XU Binshi,et al. Effect of Cu nanoparticles on the tribological performance of attapulgite base grease[J]. Tribology Transactions,2015,58:1031-1038. [19] 吴雪梅,周元康,杨绿,等. 纳米坡缕石/铜复合材料对钢球摩擦副的摩擦学性能[J]. 复合材料学报,2014,2(31):441-447. WU Xuemei,ZHOU Yuankang,YANG Lü,et al. Tribological properties of nano-palygorskite/copper composites as lubricant additive to steel ball tripair[J]. Acta Materiae Compositae Sinica,2014,2(31):441-447. [20] ZHANG Baosen,XU Binshi,XU Yi,et al. Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel-steel contacts[J]. Tribology International,2011,44:878-886. [21] 杨育林,闻艳红,张瑞军,等. 磨损时间对金属磨损自修复的影响及机理分析[J]. 机械工程学报,2008,10(44):172-176. YANG Yulin,WEN Yanhong,ZHANG Ruijun,et al. Influence of wear time on metal wear self-repair and mechanism analysis[J]. Journal of Mechanical Engineering,2008,10(44):172-176. [22] 张翼东,闫加省,孙磊,等. 纳米铜润滑油添加剂减摩抗磨及自修复性能[J]. 机械工程学报,2010,46(5):75-79. ZHANG Jidong,YAN Jiasheng,SUN Lei,et al. Friction reducing anti-wear and self-repairing properties of nano-Cu additive in lubricating oil[J]. Journal of Mechanical Engineering,2010,46(5):75-79. [23] 韩云燕,乔旦,张霖,等. 膦酸酯类离子液体作为钢/铜锡合金润滑剂的摩擦学性能及其机理研究[J]. 摩擦学学报,2015,35(2):161-165. HAN Yunyan,QIAO Dan,ZHANG Lin,et al. Tribological performance and mechanism of phosphonate ionic liquids as lubricants for steel/tin bronze contact[J]. Tribology,2015,35(2):161-165. [24] 葛翔宇,夏延秋,冯欣,等. 锂盐型电力复合脂的导电性和摩擦学性能[J]. 机械工程学报,2015,15(51):61-66. GE Xiangyu,XIA Yanqiu,FENG Xin,et al. Electrical conductivities and tribological properties of lithium salts conductive grease[J]. Journal of Mechanical Engineering,2015,15(51):61-66. [25] 欧阳平,陈国需,张贤明,等. 点/线/面接触条件下喹唑啉酮胺润滑油添加剂的摩擦学性能[J]. 机械工程学报,2012,48(7):119-123. OUYANG Ping,CHEN Guoxu,ZHANG Xianming,et al. Tribological properties of quinazolinone amine as lubricating oil additive in point/line/surface contact condition[J]. Journal of Mechanical Engineering,2012,48(7):119-123. [26] WAGNER C D,RIGGS W M,DAVIS L E,et al. Handbook of X-ray photoelectron spectroscopy[M]. Eden Prairie:Perkin-Elmer Corporation,1979. [27] YAMASHITA T,HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science,2008(254):2441-2449. [28] 刘浩,施杰,张泽,等. α-(Al,Cr,Fe)2O3相稳定性和力学性能的第一性原理计算[J].中国表面工程,2021,34(2):122-130.LIU Hao,SHI Jie,ZHANG Ze,et al. Phase stability andmechanical properties of α-(Al,Cr,Fe)2O3 phase byfirst-principles calculation[J].China Surface Engineering,2021,34(2):122-130. [29] PELISSIER B,FONTAINE H,BEAURAIN A,et al. HF contamination of 200 mm Al wafers:A parallel angle resolved XPS study[J]. Microelectron Engineering, 2011(88):861-866. [30] MONTESDEOCA-SANTANA A,JIMÉNEZ-RODRÍGUEZ E,MARRERO N,et al. XPS characterization of different thermal treatments in the ITO-Si interface of a carbonate-textured monocrystalline silicon solar cell[J]. Nuclear Instruments and Methods in Physics Research Section B,2010,268:374-378. [31] 燕赵福. 微纳米蛇纹石矿物粉体的摩擦行为及其成膜机理研究[D]. 北京:中国地质大学,2014. YAN Zhaofu. Tribological properties of serpentine micro-nanoparticles and mechanism of tribofilm formation[D]. Beijing:China University of Geosciences,2014. [32] 张博. 基于纳米凹凸棒石的在线修复型润滑脂制备与摩擦学机理研究[D]. 北京:装甲兵工程学院,2012. ZHANG Bo. Preparation of self-repairing greases based on nano attapulgite powders and investigation on their tribological characteristics[D]. Beijing:Academy of Armored Forces Engineering,2012. [33] ZHANG Baosen,XU Yi,GAO Fei,et al. Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive[J]. Applied Surface Science,2011,257:2540-2549. [34] NAN Feng,XU Yi,XU Binshi,et al. Effect of natural attapulgite powders as lubrication additive on the friction and wear performance of a steel tribo-pair[J]. Applied Surface Science,2014,307:86-91. [35] 杨峰,夏晓雷,徐创. 纳米铜润滑油添加剂的摩擦学特性及其自修复机理[J]. 材料保护,2018,51(2):22-25. YANG Feng,XIA Xiaolei,XU Chuang. Self-repairing mechanism and tribological properties of nano-Cu as lubricating oil additives[J]. Mzterial Protection,2018,51(2):22-25. [36] ZHANG Yawen,LI Zhipeng,YAN Jincan,et al. Tribological behaviours of surface-modified serpentine powder as lubricant additive[J]. Industrial Lubrication and Tribology,2016,68(1):1-8. [37] CAO Zhengfeng,XIA Yanqiu,XI Xiang. Nano-montmorillonite-doped lubricating grease exhibiting excellent insulating and tribological properties[J]. Friction,2017,5:219-230. [38] QI Xiaowei,LU Ling,JIA Zhining,et al. Comparative tribological properties of magnesium hexasilicate and serpentine powder as lubricating oil additives under high temperature[J]. Tribology International,2012,49:53-57. [39] 许一,张保森,徐滨士,等. 镧/蛇纹石复合润滑材料的热力学及摩擦学性能[J]. 粉末冶金材料科学与工程,2011,16(3):349-354. XU Yi,ZHANG Baosen,XU Binshi,et al. Thermodynamic characteristics and tribological properties of lanthanum/serpentine composite lubricating material[J]. Materials Science and Engineering of Powder Metallurgy,2011,16(3):349-354. [40] 尹艳丽,于鹤龙,王红美,等. 不同结构层状硅酸盐矿物作为润滑油添加剂的摩擦学性能[J]. 硅酸盐学报,2020,48(2):299-308. YIN Yanli,YU Helong,WANG Hongmei,et al. Tribological performance of phyllosilicate minerals as lubricating oil additives[J]. Journal of the Chinese Ceramic Society,2020,48(2):299-308. [41] NAN Feng,XU Yi,XU Binshi,et al. Tribological behaviors and wear mechanisms of ultrafine magnesium aluminum silicate powders as lubricant additive[J]. Tribology International,2015,81:199-208. [42] YU Helong,XU Yi,SHI Peijing,et al. Effect of thermal activation on the tribological behaviours of serpentine ultrafine powders as an additive in liquid paraffin[J]. Tribology International,2011,44:1736-1741. |