[1] 周文雅,张宗宇,王晓明,等. 机翼中小尺度主动变形研究进展及关键技术[J]. 机械工程学报,2021,57(2):121-138. ZHOU Wenya,ZHANG Zongyu,WANG Xiaoming,et al. Research progress and key techniques of active morphingwing at medium and small scales[J]. Journal of Mechanical Engineering,2021,57(2):121-138. [2] 张博,丁虎,陈立群. 基于压电纤维复合材料的旋转叶片主动控制[J]. 力学学报,2021,53(4):1093-1102. ZHANG Bo,DING Hu,CHEN Liqun. Active vibration control of a rotating blade based on macro fiber composite[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(4):1093-1102. [3] LOU Junqiang,YANG Yiling,WU Chuanyu,et al. Underwater oscillation performance and 3D vortex distribution generated by miniature caudal fin-like propulsion with macro fiber composite actuation[J]. Sensors and Actuators A:Physical,2020,303:111587. [4] 王晓明,周文雅,吴志刚. 压电纤维复合材料驱动的机翼动态形状控制[J]. 航空学报,2017,38(1):159-167. WANG Xiaoming, ZHOU Wenya, WU Zhigang. Dynamic shape control of wings using piezoelectric fiber composite materials[J]. Acta Aeronautica et Astronautica Sinica,2017,38(1):159-167. [5] 徐金秋,娄军强,杨依领,等. 压电宏纤维致动器的双极性非对称迟滞建模及补偿控制[J]. 振动工程学报,2021,34(1):159-165. XU Jinqiu, LOU Junqiang,YANG Yiling,et al. Modeling and feedforward comprehension control on the bipolar asymmetric hysteresis of marco fiber composite (MFC) actuators[J]. Journal of Vibration Engineering,2021,34(1):159-165. [6] 刘宽,赵梓舒,武文华,等. 宏纤维复合材料MFC作动器迟滞非线性分析与补偿方法研究[J]. 机械工程学报,2019,55 (14):178-185. LIU Kuan,ZHAO Zishu,WU Wenhua,et al. Hysteresis nonlinear analysis and its compensation method of MFC actuator[J]. Journal of Mechanical Engineering,2019,55(14):178-185. [7] WANG L,BAI F,HOFMANN V,et al. Novel traveling wave sandwich piezoelectric transducer with single phase drive:theoretical modeling, experimental validation, and application investigation[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-20. [8] GAN Jinqiang,ZHANG Xianmin. A review of nonlinear hysteresis modeling and control of piezoelectric actuators[J]. AIP Advances,2019,9(4):040702. [9] YANG Yiling,LOU Junqiang,WU Gaohua,et al. Design and position/force control of an S-shaped MFC microgripper[J]. Sensors and Actuators A:Physical,2018,282:63-78. [10] CHEN Luqi,WU Xiaohong,SUN Qing,et al. Experimental study on the electromechanical hysteresis property of macro fibre composite actuator[J]. International Journal of Acoustics & Vibration,2017,22(4):467-480. [11] SCHRÖCK J,MEURER T,KUGI A. Control of a flexible beam actuated by macro-fiber composite patches:II. Hysteresis and creep compensation,experimental results[J]. Smart Materials and Structures,2010,20(1):015016. [12] LI Wei,CHEN Xuedong. Compensation of hysteresis in piezoelectric actuators without dynamics modeling[J]. Sensors and Actuators A:Physical,2013,199:89-97. [13] 王代华,严松林,朱炜. 基于Bouc-Wen模型的压电执行器的前馈线性化控制器[J]. 仪器仪表学报,2015,36(7):1514-1521. WANG Daihua,YAN Songlin,ZHU Wei. Bouc-Wen model based feedforward linearization controller for piezoceramic micro-actuators[J]. Chinese Journal of Scientific Instrument,2015,36(7):1514-1521. [14] ZHU Wei,WANG Daihua. Non-symmetrical Bouc-Wen model for piezoelectric ceramic actuators[J]. Sensors and Actuators A:Physical,2012,181:51-60. [15] SONG J,Der Kiureghian A. Generalized Bouc-Wen model for highly asymmetric hysteresis[J]. Journal of Engineering Mechanics,2006,132 (6):610-618. [16] 王贞艳,贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J]. 光学精密工程,2018,26(10):2484-2492. WANG Zhenyan,JIA Gaoxin. Asymmetric hysteresis modeling and internal model control of piezoceramic actuators[J]. Optics and Precision Engineering,2018,26(10):2484-2492. [17] 朱炜,芮筱亭. 压电执行器的Bouc-Wen模型在线参数辨识[J]. 光学精密工程,2015,23(1):110-116. ZHU Wei,RUI Xiaoting. Online parameter identification of Bouc-Wen model for piezoelectric actuators[J]. Optics and Precision Engineering,2015,23(1):110-116. [18] WANG Geng,CHEN Guoqiang,BAI Fuzhong. Modeling and identification of asymmetric Bouc-Wen hysteresis for piezoelectric actuator via a novel differential evolution algorithm[J]. Sensors and Actuators A:Physical,2015,235:105-118. [19] MING Min,FENG Zhao,LING Jie,et al. Hysteresis modelling and feedforward compensation of piezoelectric nanopositioning stage with a modified Bouc-Wen model[J]. Micro & Nano Letters,2018,13(8):1170-1174. [20] GAN Jinqiang,ZHANG Xianmin. Nonlinear hysteresis modeling of piezoelectric actuators using a generalized Bouc-Wen model[J]. Micromachines,2019,10(3):183. [21] KIM S Y,LEE C H. Description of asymmetric hysteretic behavior based on the Bouc-Wen model and piecewise linear strength-degradation functions[J]. Engineering Structures,2019,181:181-191. [22] KANG Shengzheng,WU Hongtao,LI Yao,et al. A fractional-order normalized bouc-wen model for piezoelectric hysteresis nonlinearity[J]. IEEE/ASME Transactions on Mechatronics,2021,27(1):126-136. [23] VAIANA Nicolò,SESSA Salvatore,ROSATI Luciano. A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena[J]. Mechanical Systems and Signal Processing,2021,146:106984. [24] NIU Muqing,CHEN Liqun. Dynamic effect of constant inertial acceleration on vibration isolation system with high-order stiffness and Bouc-Wen hysteresis[J]. Nonlinear Dynamics,2021,103(3):2227-2240. [25] 胡凯明,文立华. PBP驱动器率相关迟滞特性研究及其线性化控制[J]. 机械工程学报,2016,52(12):205-212. HU Kaiming,WEN Lihua. Research on rate-dependent hysteresis characteristics of PBP actuators and its linearization control[J]. Journal of Mechanical Engineering,2016,52(12):205-212. [26] 周奇,杨扬,宋学官,等. 变可信度近似模型及其在复杂装备优化设计中的应用研究进展[J]. 机械工程学报,2020,56(24):219-245. ZHOU Qi,YANG Yang,SONG Xueguan,et al. Survey of multi-fidelity surrogate models and their applications in the design and optimization of engineering equipment[J]. Journal of Mechanical Engineering,2020,56(24):219-245. [27] XIAO Shunli,LI Yangmin. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse preisach model[J]. IEEE Transactions on Control Systems Technology,2012,21(5):1549-1557. |