[1] PATIR N,CHENG H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. ASME Journal of Lubrication Technology,1978,100:2-17. [2] PATIR N,CHENG H S. Application of average flow model to lubrication between rough sliding surfaces[J]. ASME Journal of Lubrication Technology,1979,101:220-230. [3] JANG J Y,KHONSARI M M. Thermal characteristics of a wet clutch[J]. Journal of Tribology,1999,121:610-617. [4] SHAHJADA A P,SYEDA M,MAKOTO O. Development of new groove design for reduction of drag torque or spin loss of disengaged wet clutches in the high speed region[R]. SAE 2018-01-1300,2018. [5] WU P H. ZHOU X J,YANG C L,et al. Parametric analysis of the drag torque model of wet multi-plate friction clutch with groove consideration[J]. SAE International,2018,70(7):1268-1281. [6] IQBAL S,AL-BENDER F,PLUYMERS B,et al. Model for predicting drag torque in open multi-disks wet clutches[J]. Journal of Fluids Engineering,2014,136(2):021103. [7] SINGH A. Closed form solution for outflow between corotating disks[J]. Journal of Fluids Engineering,2016,138:051203. [8] YUAN Yiqing,LIU E A,HILL J,et al. An improved hydrodynamic model for open wet transmission clutches[J]. Journal of Fluids Engineering,2007,129(3):333-337. [9] IQBAL S,AL-BENDER F,PLUYMERS B,et al. Experimental characterization of drag torque in open multi-disks wet clutches[J]. International Journal of Fuels Lubricants,2013,6(3):894-906. [10] IQBAL S,AL-BENDER F,OMPUSUNGGU A P,et al. Modeling and analysis of wet friction clutch engagement dynamics[J]. Mechanical Systems and Signal Processing,2015,60-61:420-436. [11] WANG Wei,HE Yongyong,ZHAO Jun,et al. Optimization of groove texture profile to improve hydrodynamic lubrication performance:theory and experiments[J]. Friction,2018,8(1):83-94. [12] WANG S H,ZHANG H H. Combined effects of thermal and non-newtonian character of lubricant on pressure,film profile,temperature rise,and shear stress in EHL[J]. Journal of Tribology,1987,109(4):666-670. [13] SCARAGGI M,MEZZAPESA F P,CARBONE G,et al. Minimize friction of lubricated laser microtextured surfaces by tuning microholes depth[J]. Journal of Tribology,2014,75:123-127. [14] JANG J Y,KHONSARI M M. Elastohydrodynamic line-contact of compressible shear thinning fluids with consideration of the surface roughness[J]. Journal of Tribology,2010,132(3):034501. [15] JANG J Y,KHONSARI M M,BAIR S. On the elastohydrodynamic analysis of shear-thinning fluids[J]. Proceedings of the Royal Society A:Mathematical,Physical & Engineering Sciences,2007,111(1):3271-3290. [16] SOJOUDI H. KHONSARI M M. On the modeling of quasi-steady and unsteady dynamic friction in sliding lubricated line contact[J]. Journal of Tribology,2010,132(1):012101. [17] YEVTUSHENKO A A,GRZES P. Mutual influence of the sliding velocity and temperature in frictional heating of the thermally nonlinear disc brake[J]. International Journal of Thermal Sciences,2016,102:254-262. [18] YANG Wanyou,XIONG Cenbo,ZHOU Qinghua,et al. Effects of friction heating on a half space involving ellipsoidal inclusions with non-uniform eigentemperature gradients[J]. International Journal of Thermal Sciences,2020,151:106278. [19] BAUZIN J G,NGUYEN M N,LARAQI N,et al. Thermal characterization of frictional interfaces using experiments and inverse heat conduction methods[J]. International Journal of Thermal Sciences,2019,137:431-437. [20] CUI Jianzhong,LIU Jun,XIE Fangwei,et al. Effects of pressure boundary on dynamic torque behavior of hydroviscous drive[J]. Journal of Tribology,2018,40:061705. [21] MUSER M H,DAPP W B,BUGNICOURT R,et al. Meeting the contact-mechanics challenge[J]. Tribology Letters,2017,65:1-18. [22] LIJESH K P,KHONSARI M M. On the degradation of tribo-components in boundary and mixed lubrication regimes[J]. Tribology Letters,2019,67:1-12. [23] LIJESH K P,KHONSARI M M. On the useful life of tribo-pairs experiencing variable loading and sliding speed[J]. Wear,2018,416-417:103-114. [24] LI Meng,KHONSARI M M,MCCARTHY D M C,et al. Parametric analysis for a paper-based wet clutch with groove consideration[J]. Tribology International,2014,80:222-233. [25] 吴邦治,秦大同,胡建军,等. 考虑摩擦副接触应力场和冷却流场的湿式离合器温度场分析[J]. 机械工程学报,2020,356(22):190-200. WU Bangzhi,QIN Datong,HU Jianjun,et al. Analysis of temperature field of wet clutch considering contact stress field and cooling flow field of friction pair[J]. Journal of Mechanical Engineering,2020,356(22):190-200. [26] 张志刚,余晓霞,侯亚斌,等. 同步器摩擦传动机理建模与材料参数影响研究[J]. 中国公路学报,2019,32(8):174-182. ZHANG Zhigang,YU Xiaoxia,HOU Yabin,et al. Influence of the temperature of lubricating oil on the friction torque of cu-based wet clutch[J]. China Journal of Highway and Transport,2019,32(8):174-182. [27] DUTTA A,LONESCU C M,KEYSER R D,et al. Robust and two-level (nonlinear) predictive control of switched dynamical systems with unknown references for optimal wet-clutch engagement[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2013,228(4):233-244. [28] VAN V K,RODRIGUEZ A,GAGLIOLO M,et al. Improving wet clutch engagement with reinforcement learning[C]//In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN),June 10-15,2012,Brisbane,Australia,2012:1-8. [29] DEPRAETERE B,PINTE G,SYMENS W,et al. A two-level iterative learning control scheme for the engagement of wet clutches[J]. Mechatronics,2011,21(3):501-508. [30] OMPUSUNGGU A P,PAPY J M,VANDENPLAS S. Kalman-filtering-based prognostics for automatic transmission clutches[J]. IEEE/ASME Transactions on Mechatronics,2016,217(1):419-430. [31] OMPUSUNGGU A P,PAPY J M,VANDENPLAS S,et al. A Novel Monitoring method of wet friction clutches based on the post-lockup torsional vibration signal[J]. Mechanical Systems and Signal Processing,2013,35:345-368. |