[1] DING L,HUANG L,Li S,et al. Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain[J]. IEEE Transactions on Robotics,2020,99:1-16. [2] 王雁东,唐昭,戴建生. 连杆铰接轮腿式机器人的运动学与步态分析[J]. 机械工程学报,2018,54(7):11-19. WANG Yandong,TANG Zhao,DAI Jiansheng. Kinematics and gait analysis of a linkage-jointed wheel-legged robot[J]. Journal of Mechanical Engineering,2018,54(7):11-19. [3] LI C,ZHANG T,GOLDMAN D I. A terradynamics of legged locomotion on granular media[J]. Science,2013,339(6126):1408-1412. [4] 赖一楠,叶鑫,丁汉. 共融机器人重大研究计划研究进展[J]. 机械工程学报,2021,57(23):1-11,20. LAI Yinan,YE Xin,DING Han. Research progress of major research plan on tri-co robots[J]. Journal of Mechanical Engineering,2021,57(23):1-11,20. [5] YANG C,DING L,TANG D,et al. Improved Terzaghi-theory-based interaction modeling of rotary robotic locomotors with granular substrates[J]. Mechanism and Machine Theory,2020,152:103901. [6] VINA A,BARRIENTOS A. C-legged hexapod robot design guidelines based on energy analysis[J]. Applied Sciences,2021,11(6):2513. [7] WANG G,RIAZ A,BALACHANDRAN B. Continuum modeling and simulation of robotic appendage interaction with granular material[J]. Journal of Applied Mechanics,2020,88(2):021013. [8] KANG W,FENG Y,LIU C,et al. Archimedes' law explains penetration of solids into granular media[J]. Nature Communications,2018,9(1):1101. [9] COMIN F J,SAAJ C M. Models for slip estimation and soft terrain characterization with multilegged wheel-legs[J]. IEEE Transactions on Robotics,2017,33(6):1438-1452. [10] HUANG L,ZHU J D,YUAN Y F,et al. A dynamic resistive force model for designing mobile robot in granular media[J] IEEE Robotics and Automation Letters,2022,7(2):5357-5364. [11] TREERS L K,CAO C,STUART H S. Granular resistive force theory implementation for three-dimensional trajectories[J]. IEEE Robotics and Automation Letters,2021,6(2):1887-1894. [12] DALLAS J,COLE M P,JAYAKUMAR P,et al. Terrain adaptive trajectory planning and tracking on deformable terrains[J]. IEEE Transactions on Vehicular Technology. 2021,70(11):11255-11268. [13] ZENG R Y,KANG Y T,YANG J,et al. An integrated terrain identification framework for mobile robots:system development,analysis,and verification[J]. IEEE-ASME Transactions on Mechatronics,2021,26(3):1581-1590. [14] 薛龙,党兆龙,陈百超,等. 地面力学在火星壤力学参数估计研究中的进展与展望[J]. 宇航学报,2020,41(2):136-146. XUE Long,DANG Zhaolong,CHEN Baichao,et al. Advances and prospects of martian soil parameter identification based on terramechanics[J]. Journal of Astronautics,2020,41(2):136-146. [15] ARREGUIN A L,MONTENEGRO S,DILGER E. Towards in-situ characterization of regolith strength by inverse terramechanics and machine learning:A survey and applications to planetary rovers[J]. Planetary and Space Science,2021,204:105271. [16] HAN D L,ZHANG R,CAO Q Q,et al. Research in mechanical model of bionic foot intruding into sands with different physical characteristics[J]. Journal of Terramechanics,2021,98:25-33. [17] IAGNEMMA K,KANG S,SHIBLY H,et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions on Robotics,2004,20(5):921-927. [18] 丁亮,高海波,邓宗全,等. 基于月球车轮地作用地面力学积分模型的月壤力学参数辨识方法[J]. 航空学报,2011,32(6):1112-1123. DING Liang,GAO Haibo,DENG Zongquan,et al. An approach of identifying mechanical parameters for lunar soil based on integrated wheel-soil interaction terramechanics model of rovers[J]. Acta Aeronautica et Astronautica Sinica,2011,32(6):1112-1123. [19] WU X A,HUH T M,MUKHERJEE R,et al. Integrated ground reaction force sensing and terrain classification for small legged robots[J]. IEEE Robotics & Automation Letters,2016:1125-1132. [20] ZHAO Y,GAO F,SUN Q,et al. Terrain classification and adaptive locomotion for a hexapod robot qingzhui[J]. Frontiers of Mechanical Engineering,2021,16(2):271-284. |