• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (5): 259-270.doi: 10.3901/JME.2023.05.259

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

新型TBM螺旋槽滚刀破岩性能及接触行为研究

张蒙祺1,2, 勾斌1,2, 邓雨1,2, 段文军2,3, 莫继良1,2, 周仲荣1   

  1. 1. 西南交通大学机械工程学院 成都 610031;
    2. 西南交通大学盾构/TBM装备摩擦学设计实验室 成都 610031;
    3. 中铁高新工业股份有限公司 北京 100070
  • 收稿日期:2022-04-26 修回日期:2022-10-10 出版日期:2023-03-05 发布日期:2023-04-20
  • 通讯作者: 莫继良(通信作者),男,博士,研究员,博士研究生导师。主要研究方向为摩擦学/动力学行为分析、振动与噪声控制、故障诊断与智能化等。E-mail:jlmo@swjtu.edu.cn
  • 作者简介:张蒙祺,男,博士,助理研究员。主要研究方向为接触力学、摩擦学与数值计算法。E-mail:mzhang@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(52005419)、中国博士后科学基金(2019M663898XB)和四川省重点研发(21ZDYF3658)资助项目。

Cutting Performance and Contact Behavior of a Novel TBM Cutter with Surface Spiral Grooves

ZHANG Mengqi1,2, GOU Bin1,2, DENG Yu1,2, DUAN Wenjun2,3, MO Jiliang1,2, ZHOU Zhongrong1   

  1. 1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031;
    2. Tribological Design Laboratory of Shield/TBM Equipment, Southwest Jiaotong University, Chengdu 610031;
    3. China Railway High-Tech Industry Co., Ltd., Beijing 100070
  • Received:2022-04-26 Revised:2022-10-10 Online:2023-03-05 Published:2023-04-20

摘要: 全断面隧道掘进机(TBM)是用于长大隧道建设的关键装备,在川藏铁路等国家重大战略工程中发挥着重要作用。但TBM在硬岩地层施工中仍然面临所需推力大、掘进速度慢、滚刀损耗严重等问题,亟待解决。尝试探索基于滚刀表面结构设计调控刀-岩接触的可行性,设计了一种新型螺旋槽盘形滚刀。使用直线切割破岩实验研究不同贯入度和岩石种类下新型滚刀的破岩性能,并利用颗粒流离散元数值仿真对其破岩机理进行阐释。结果表明,滚刀表面的螺旋槽设计可以显著地降低破岩时切削力,而对生成的岩石碎片总体积无明显影响,因此可以显著减小滚刀做功,降低破岩比能,提高破岩过程的能量利用效率。其机理在于螺旋槽有效地优化了岩石内应力分布,使得同一滚刀前后相邻的刃齿在沟槽下方岩石中形成拉应力区,该部分岩石未与滚刀直接接触形成岩石粉末,而是由拉裂纹互相贯通形成岩石碎片,即减少了岩石粉末数量、缓解了岩石过度破碎程度,最终达到了降低切削载荷和破岩能耗的效果。

关键词: 全断面隧道掘进机, 盘形滚刀, 表面结构, 破岩实验, 离散元模型

Abstract: The tunnel boring machine (TBM) is one of the key equipment used in long tunnel construction, which plays an important role in Sichuan-Tibet railway and other major national strategic projects. However, TBM still suffers some problems in hard rock stratum, such as large thrust, slow tunneling speed and serious cutter wear, which need to be solved urgently. The feasibility of controlling the cutter-rock contact based on the cutter surface structure design is discussed, and a spiral-grooved disc cutter is designed. The rock cutting efficiency of the new cutter under different penetration depth and rock types is studied by using linear rock cutting experiments, and the rock breaking mechanism is explained by using the particle flow discrete element numerical simulation. The results show that the spiral grooves on the surface of the cutter can reduce the cutting force, but has only minor effect on the total volume of rock fragments, so it can significantly reduce the work done by the cutter, and improve the energy utilization efficiency of rock cutting process. The reason is that the spiral groove optimizes the rock stress distribution so the rock under a groove is broken by tensile stress, i.e., rock fragments are formed by the interpenetration of cracks, which reduced the number of rock powder, alleviate the excessive degree of broken rock, and finally the cutting load and energy consumption are reduced.

Key words: tunnel boring machine, disc cutter, surface structure, rock cutting experiment, discrete element model

中图分类号: