• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (11): 231-240.doi: 10.3901/JME.2022.11.231

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于热误差混沌演化的机床运动精度劣化预示

杜柳青, 胡杰, 余永维   

  1. 重庆理工大学机械工程学院 重庆 400054
  • 收稿日期:2021-11-09 修回日期:2022-03-08 出版日期:2022-06-05 发布日期:2022-08-08
  • 通讯作者: 杜柳青(通信作者),女,1975年出生,博士,教授。主要研究方向为机床精度设计,微弱信号检测。E-mail:lqdu@cqut.edu.cn
  • 作者简介:胡杰,男,1996年出生。主要研究方向为热误差补偿技术。E-mail:ftong@126.com;余永维,男,1973年出生,博士,教授。主要研究方向为智能制造,机器视觉。E-mail:weiyy@cqut.edu.cn
  • 基金资助:
    国家自然科学基金(51775074)、重庆市自然科学基金(cstc2021jcyj-msxmX0372)和重庆理工大学创新基金(clgycx20202073)资助项目

Prediction of Machine Tool's Motion Accuracy Deterioration Based on Chaotic Evolution of Thermal Error

DU Liuqing, HU Jie, YU Yongwei   

  1. College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054
  • Received:2021-11-09 Revised:2022-03-08 Online:2022-06-05 Published:2022-08-08

摘要: 热误差恶化是导致数控机床精度衰退的主要因素之一,提出利用机床热误差的混沌特性揭示隐藏在无序和复杂表象中的温升过程内在规律,对机床运动精度劣化进行早期预示。对机床温度测点历史数据进行混沌相空间重构,用Lyapunov指数证明数控机床温升过程实际为一种具有混沌特性的复杂非线性系统演化运动,从多维空间和视角来辨识系统,挖掘系统中蕴藏的热误差规律;提出一种混沌演化和长短时记忆网络(Chaotic phase space evolution and long short term memory neural,CPSE-LSTM)热误差预测模型,以相空间重构后的混沌温升序列为输入,提取动态混沌时间序列的时空特征,提高机床热误差演化模型在不同条件下的准确性和泛化能;定义温升过程的圆运动重复定位误差,利用机床主轴热误差与圆运动精度的映射关系评估机床的运动误差,对数控机床运动精度衰退进行早期预示。实验结果表明,CPSE-LSTM模型在不同条件下均有较高的预测精度和泛化能力,对机床运动精度的评估值与实测值高度吻合。

关键词: 热误差预测, 运动精度, 混沌演化, 精度劣化, 深度学习

Abstract: Thermal error is one of the main factors leading to the decline of NC machine tool's accuracy. It is proposed to use the chaotic characteristics of the thermal error to reveal the internal law of the temperature rise process hidden in the disordered and complex representation, so as to predict the early deterioration of the motion accuracy of the machine tool. The chaotic phase space was reconstructed from the historical data of machine tool temperature measuring points. The Lyapunov exponent was used to prove that the temperature rise process of NC machine tool was actually a complex nonlinear system evolution motion with chaotic characteristics. The system was identified from multi-dimensional space and perspective, and the law of thermal error contained in the system was excavated. A thermal error prediction model based on chaotic phase space evolution and long short term memory neural (CPSE-LSTM)was proposed. The reconstructed temperature series was used as the input of the prediction model. The temporal and spatial characteristics of dynamic chaotic time series were extracted to improve the accuracy and generalization ability of machine tool thermal error prediction model under different conditions. The circular motion repeated positioning error in the temperature rise process was defined. According to the mapping relationship between the thermal error of the machine tool spindle and the circular motion accuracy, the motion error of the machine tool was evaluated, and the decline of the motion accuracy of the NC machine tool was predicted in early stage. The experimental results show that CPSE-LSTM model has high prediction accuracy and generalization ability under different conditions, and the evaluated value of machine tool motion accuracy is highly consistent with the measured value.

Key words: thermal error prediction, motion accuracy, chaotic evolution, accuracy deterioration, deep learning

中图分类号: