[1] LIU Kuo, HAN Wei, WANG Yongqing, et al. Review on thermal error compensation for feed axes of CNC machine tools[J]. Journal of Mechanical Engineering, 2021, 57(03):156-173. 刘阔, 韩伟, 王永青, 等. 数控机床进给轴热误差补偿技术研究综述[J]. 机械工程学报, 2021, 57(03):156-173. [2] WANG Haitao, LI Tiemin, WANG Liping, et al. Review on thermal error modeling of machine tools[J]. Journal of Mechanical Engineering, 2015, 51(9):119-128. 王海同, 李铁民, 王立平, 等. 机床热误差建模研究综述[J]. 机械工程学报, 2015, 51(9):119-128. [3] LI B, TIAN X T, ZHANG M. Thermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural network[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1-4):1497-1505. [4] TAN Feng, LI CHengnan, XIAO Hong, et al. A thermal error prediction method for CNC machine tools based on LSTM recurrent neural network[J]. Chinese Journal of Scientific Instrument, 2020, 41(09):79-87. 谭峰, 李成南, 萧红, 等. 基于LSTM循环神经网络的数控机床热误差预测方法[J]. 仪器仪表学报, 2020, 41(09):79-87. [5] LI Bin, ZHANG Yun, WANG Liping, et al. Modeling for CNC machine tool thermal error based on genetic algorithm optimization wavelet neural network[J]. Journal of Mechanical Engineering, 2019, 55(21):215-220. 李彬, 张云, 王立平, 等. 基于遗传算法优化小波神经网络数控机床热误差建模[J]. 机械工程学报, 2019, 55(21):215-220. [6] FUJISHIMA M, NARIMATSU K, IRINO N, et al. Adaptive thermal displacement compensation method based on deep learning[J]. CIRP Journal of Manufacturing Science and Technology, 2019, 25:22-25. [7] HUANG ZHi, LIU Yongchao, DENG Tao, et al. A method for thermal error modeling of FAMT[J]. China Mechanical Engineering, 2020, 31(13):1529-1538. 黄智, 刘永超, 邓涛, 等. 一种五轴数控机床热误差建模方法[J]. 中国机械工程, 2020, 31(13):1529-1538. [8] DAI Ye, YIN Xiangming, WEI Wenqiang, et al. Thermal error modeling of high-speed motorized spindle based on ANFIS[J]. Chinese Journal of Scientific Instrument, 2020, 41(06):50-58. 戴野, 尹相茗, 魏文强, 等. 基于ANFIS的高速电主轴热误差建模研究[J]. 仪器仪表学报, 2020, 41(06):50-58. [9] MENG Fannian, DU Wenliao, LI Hao, et al. Fusion model prediction of rolling bearing vibration signal based on chaos theory[J]. Journal of Aerospace Power, 2020, 35(08):1664-1675. 孟凡念, 杜文辽, 李浩, 等. 基于混沌理论的滚动轴承振动信号融合模型预测[J]. 航空动力学报, 2020, 35(08):1664-1675. [10] SUN Yang, XIONG Guangming, CHEN Huiyan, et al. Quantitative analysis of unmanned ground vehicles trajectories based on chaos theory[J]. Journal of Mechanical Engineering, 2016, 52(2):127-133. 孙扬, 熊光明, 陈慧岩, 等. 基于混沌理论的无人驾驶车辆行驶轨迹量化分析[J]. 机械工程学报, 2016, 52(2):127-133. [11] HAN Min, REN Weijie, LI Baisong, et al. Survey of chaotic time series analysis and prediction[J]. Information and Control, 2020, 49(01):24-35. 韩敏, 任伟杰, 李柏松, 等. 混沌时间序列分析与预测研究综述[J]. 信息与控制, 2020, 49(01):24-35. [12] WANG Y F, FU Y CH, XUE H. Improved prediction method of PV output power based on optimised chaotic phase space reconstruction[J]. IET Renewable Power Generation, 2020, 14(11):1831-1840. [13] WANG Lan, WANG Xi, LI Huaqiang, et al. Chaotic time series prediction model of wind power based on phase space reconstruction and error correction[J]. Proceedings of the CSU-EPSA, 2017, 29(09):65-69. 王兰, 王晞, 李华强, 等. 基于相空间重构和误差补偿的风电功率混沌时间序列预测模型[J]. 电力系统及其自动化学报, 2017, 29(09):65-69. [14] LIU Y, SHI Q J, LI J, et al. Study on gas emission rate prediction based on chaos analysis[J]. Procedia Engineering, 2011, 24:106-110. [15] KUMAR R, SRIVASTAVA S. Externally recurrent neural network based identification of dynamic systems using Lyapunov stability analysis[J]. ISA Transactions, 2020, 98:292-308. [16] DONG Zihan. Load forecasting of a regional power grid based on the chaotic time series[J]. Power System and Clean Energy, 2019, 35(05):38-41. 董子晗. 基于混沌时间序列的地区电网负荷预测[J]. 电网与清洁能源, 2019, 35(05):38-41. [17] JAMIL M, ZEESHAN M. A comparative analysis of ANN and chaotic approach-based wind speed prediction in India[J]. Neural Computing and Applications, 2019, 31(10):6807-6819. [18] WANG Xin, WU Ji, LIU Chao, et al. Exploring LSTM based on recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(04):772-784. 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(04):772-784. [19] XIN Zongpei, FENG Xianying, DU Fuxin, et al. Modeling and analysis of machine tool thermal error based on BP neural network[J]. Modular Machine Tool&Automatic Manufacturing Technique, 2019(08):39-43. 辛宗霈, 冯显英, 杜付鑫, 等. 基于BP神经网络的机床热误差建模与分析[J]. 组合机床与自动化加工技术, 2019(08):39-43. |