[1] ISO 2692-2014, Geometrical product specifications (GPS) – Geometrical tolerancing – Maximum material requirement (MMR), least material requirement (LMR) and reciprocity requirement (RPR)[S]. Genevese, Switzerland: International Standard Organization. [2] GB/T 16671-2018, Geometrical product specification (GPS) – Geometrical tolerancing – Maximum material requirement (MMR), least material requirement (LMR) and reciprocity requirement (RPR)[S]. Beijing: Standards Press of China. GB/T 16671-2018, 产品几何技术规范(GPS)几何公差最小实体要求、最小实体要求和可逆要求[S]. 北京: 中国标准出版社. [3] WANG Gu. Research on the runout and coaxiality measurement technique of aero-engine honeycomb surface[D]. Harbin: Harbin Institute of Technology, 2015. 万谷. 航空发动机蜂窝表面跳动和同轴度测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [4] ZHANG B, ZHANG W J, LEI L H. Development of coaxiality measurement system of turbine components and stud standard parts[J]. Infrared and Laser Engineering, 2020, 49(10): 162-167. [5] HU Weixin. Milling tests to measure five-axis machine tool errors[D]. Hangzhou: Zhejiang University, 2018. 胡维鑫. 五轴机床误差的铣削加工测量方法[D]. 杭州: 浙江大学, 2018. [6] ZHAO Lei, CHENG Kai, DING Hui, et al. On-machine measurement of the straightness and tilt errors of a linear slideway using a new four-sensor method[J]. Chinese Journal of Mechanical Engineering, 2019, 32(2): 122-132. [7] AMETA G, SINGH G, DAVIDSON J K, et al. Application of T-MAPS for composite position tolerance for patterns of features[C]//ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE 2017), 2017: V001T02A014. [8] LIU Jianhua, ZHANG Zhiqiang, XIA Huanxiong, et al. Assembly accuracy analysis with consideration of form defects and surface deformations[J]. Journal of Mechanical Engineering, 2021, 57(3): 207-219. 刘检华, 张志强, 夏焕雄, 等. 考虑表面形貌与受力变形的装配精度分析方法[J]. 机械工程学报, 2021, 57(3): 207-219. [9] TANG Zhemin, HUANG Meifa, SUN Yonghou. Assembly statistic tolerance modeling based on homogeneous transformation[J]. Computer Integrated Manufacturing System, 2017, 23(3): 455-464. 唐哲敏, 黄美发, 孙永厚. 基于齐次坐标变换的统计装配公差建模[J]. 计算机集成制造系统, 2017, 23(3): 455-464. [10] JIANG Ke, LIU Jianhua, NING Ruxin, et al. Variation analysis and assembly success rate computation for clearance fit under constraint of location priority[J]. Journal of Mechanical Engineering, 2014, 50(15): 136-146. 蒋科, 刘检华, 宁汝新, 等. 定位优先级约束下间隙配合的变动解析与装配成功率计算[J]. 机械工程学报, 2014, 50(15): 136-146. [11] LUO Chen, NIE Jiaqi, ZHOU Yijun. An improved tolerance modeling method based on Bézier parametric space envelope[J]. Journal of Mechanical Engineering, 2021, 57(9): 183-190. 罗晨, 聂家齐, 周怡君. 基于Bézier参数空间包络的改进公差建模方法[J]. 机械工程学报, 2021, 57(9): 183-190. [12] KALISH N J, DAVIDSON J K, RAMNATH S, et al. Mathematical tools for automating digital fixture setups: Constructing T-maps and relating metrological data to coordinates for T-maps and deviation spaces[J]. Journal of Computing and Information Science in Engineering, 2018, 18(4): 1-12. [13] ZHANG Xi, LI Jie, FAN Jianying, et al. Analysis and evaluation of coaxiality error of semi-strapdown micro inertial measurement system[J]. Acta Armamentarii, 2015, 36(3): 503-509. 张樨, 李杰, 范建英, 等. 半捷联微惯性测量系统同轴度误差解析评定[J]. 兵工学报, 2015, 36(3): 503-509. [14] ZHANG Y, GE L. A novel geometry error measurement methodology for coaxiality evaluation[C]//Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture, London: SAGE Publications Ltd, 2021: 627-639. [15] GUO Chongying, LIU Jianhua, TANG Chengtong, et al. Evaluation of geometric error based on deviation vector of geometric feature[J]. Computer Integrated Manufacturing Systems, 2015, 21(10): 2604-2612. 郭崇颖, 刘检华, 唐承统, 等. 基于几何特征变动向量的几何误差评定方法[J]. 计算机集成制造系统, 2015, 21(10): 2604-2612. [16] WANG Ruijian. Concentricity and straightness visual measurement technology for high speed rail vehicles axle[D]. Changchun: Jilin University, 2018. 王瑞剑. 高速轨道客车车轴同轴度与直线度视觉测量技术[D]. 长春: 吉林大学, 2018. [17] XIONG Youlun. The theory and algorithm of form error evaluation[J]. Journal Huazhong (Central China) University of Science and Technology, 1987, 15(5): 85-90. 熊有伦. 评定形状误差的理论和算法[J]. 华中工学院学报, 1987, 15(5): 85-90. [18] VLADAN R, MIODRAG H, BRANKO Š, et al. Evaluating minimum zone flatness error using new method—bundle of plains through one point[J]. Precision Engineering, 2016, 43: 554-562. [19] LIU F, XU G, LANG L, et al. Minimum zone evaluation of sphericity deviation based on the intersecting chord method in Cartesian coordinate system[J]. Precision Engineering, 2016, 45: 216-229. [20] DANIEL G M, CUESTA E, SANCHEZ H P, et al. The use of virtual circles gauge for a quick verification of portable measuring arms[J]. Key Engineering Materials, 2014, 615: 70-75. [21] MINGUEZ R, ARIAS A, ETXANIZ O, et al. Framework for verification of positional tolerances with a 3D non-contact measurement method[J]. International Journal on Interactive Design and Manufacturing (IJIDeM), 2016, 10(2): 85-93. [22] CAI Min, WU Zhaotong, GUO Jianping, et al. Tolerance consistence evaluation tool for computer-aided tolerance design--soft gauge[J]. China Mechanical Engineering, 1999, 10(11): 1260-1263. 蔡敏, 吴昭同, 郭建平, 等. 计算机辅助公差设计一致性的评价工具—软件量规[J]. 中国机械工程, 1999, 10(11): 1260-1263. |