• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2016, Vol. 52 ›› Issue (16): 27-32.doi: 10.3901/JME.2016.16.027

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

改进蜂群算法及其在圆度误差评定中的应用*

罗钧1, 林于晴1, 刘学明2, 张平2, 周东1, 陈建端2   

  1. 1. 重庆大学光电技术及系统教育部重点实验室 重庆 4000302;
    兵器工业5011区域计量站 重庆 400050
  • 出版日期:2016-08-20 发布日期:2016-08-20
  • 作者简介:

    罗钧 (通信作者),男,1963年出生,教授。主要从事精密仪器及机械、测试计量技术及仪器、嵌入式系统等方向的研究。

    E-mail:luojun@cqu.edu.cn

  • 基金资助:
    * 国防科工委国防军工计量“十一五”计划重点资助项目(B20301118); 20150901收到初稿,20160518收到修改稿;

Research on Roundness Error Evaluation Based on the Improved Artificial Bee Colony Algorithm

LUO Jun1, LIN Yuqing1, LIU Xueming2, ZHANG Ping2, ZHOU Dong1, CHEN Jianduan2   

  1. 1. Key Lab for Optoelectronic Technology & System of the Ministry of Education, Chongqing University, Chongqing 400030;
    2. 5011 District Measurement Station of Weapon Industry, Chongqing 400050
  • Online:2016-08-20 Published:2016-08-20

摘要:

针对基本人工蜂群算法(Artificial bee colony algorithm, ABC)的缺点,提出一种改进人工蜂群算法(Improved artificial bee colony algorithm, IABC),并应用于圆度误差最小区域评定中。该改进算法利用信息熵初始化种群,增强种群的多样性,并在引领蜂和跟随蜂搜索阶段,提出一种新的搜索策略,平衡算法的探索与开发能力。详细阐述IABC算法的基本原理与实现步骤,给出圆度误差满足最小包容区域条件的优化目标函数和收益度函数。通过基准测试函数验证IABC算法的有效性和准确性;通过对由三坐标机测得的多组测量数据进行圆度误差评定试验,结果表明IABC算法的评定精度优于最小二乘法、遗传算法以及粒子群算法等其他优化算法,且在求解质量和稳定性上优于ABC算法,验证了IABC算法不仅正确,而且适用于圆度误差的评定优化。

关键词: 误差评定, 圆度误差, 最小区域, 人工蜂群算法

Abstract:

According to the weakness of artificial bee colony algorithm(ABC), a new improved artificial bee colony algorithm(IABC) is presented and is applied to evaluate roundness error in minimum zone. The improved algorithm use information entropy to initialize population to enhance diversity, besides, a new search strategy is proposed in the stage of employed bees and onlookers. The fundamentals and implementation techniques of IABC are discussed. The optimal target function for roundness error evaluation and the fitness function of IABC are introduced. A series of classical test functions are selected in the experiments, the simulation results verifies the feasibility of IABC. Through several algorithms to measure some same sets of data for roundness error evaluation experiment, the results show that the evaluation precision of IABC is better than least square method(LSM)、genetic algorithm(GA)、particle swarm optimization(PSO) and some other algorithms, and it is superior to ABC in optimization of efficiency, quality and stability, the experiment results also show that IABC is correct and is a unified approach for roundness error evaluations.

Key words: error evaluation, minimum zone, roundness error, artificial bee colony algorithm(ABC)