• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (2): 291-306.doi: 10.3901/JME.2023.02.291

• 交叉与前沿 • 上一篇    下一篇

扫码分享

基于离散人工蜂群算法的多目标分布式异构零等待流水车间调度方法

李浩然, 高亮, 李新宇   

  1. 华中科技大学机械科学与工程学院 武汉 430074
  • 收稿日期:2021-12-12 修回日期:2022-07-05 发布日期:2023-03-30
  • 通讯作者: 李新宇(通信作者),男,1985年出生,博士,教授,博士研究生导师。主要研究方向为车间调度、智能制造系统。E-mail:lixinyu@mail.hust.edu.cn
  • 作者简介:李浩然,男,1995年出生。主要研究方向为流水车间调度、智能优化方法。E-mail:qawslihaoran@qq.com;高亮,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为车间调度、智能制造系统。E-mail:gaoliang@mail.hust.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51825502,U21B2029)。

Discrete Artificial Bee Colony Algorithm for Multi-objective Distributed Heterogeneous No-wait Flowshop Scheduling Problem

LI Haoran, GAO Liang, LI Xinyu   

  1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2021-12-12 Revised:2022-07-05 Published:2023-03-30

摘要: 分布式制造(Distributed manufacturing,DM)已成为当前主流制造模式之一,广泛存在于航空、电子等行业实际生产中。在DM中,各个工厂存在诸如机器数量、机器工艺、原料运输条件的差别,即异构性。然而,目前的分布式调度研究中均未考虑工厂的异构性。因此,结合实际需求,研究一种考虑序列相关准备时间的多目标分布式异构零等待流水车间调度问题(Multi-objective distributed heterogeneous no-wait flowshop scheduling problem with sequence-dependent setup time,MDHNWFSP-SDST)。首先,建立了以最大完工时间和总滞后为目标的多目标优化模型。基于问题特征及多目标特性,提出了一种多目标离散人工蜂群算法(Multi-objective discrete artificial bee colony,MODABC)。其次,改进了PWQ算法(Improved PWQ,IPWQ)初始化种群,解决了PWQ存在的数量级和重复解等问题;在雇佣蜂阶段,结合分布式调度问题特点,设计了四种邻域结构生成可行解以提升种群质量;在跟随蜂阶段,改进了工件位置交叉方法以生成子代种群,在保留父代优良特性的同时保持种群多样性;在侦查蜂阶段,嵌入了一种多目标局部搜索方法以保证解空间的充分搜索。最后,通过与其他多目标优化算法对比,验证了所提出MODABC的有效性和优越性。

关键词: 分布式零等待流水车间调度, 人工蜂群算法, 异构性, 多目标优化

Abstract: Distributed manufacturing(DM) becomes one of the mainstream manufacturing models, which widely exists in real-world production, including aviation, electronics industries and etc. In DM, there are differences in the number of machines, machine processes, and raw material transportation conditions in every factory, that is, heterogeneity. However, there is no research considering the heterogeneity of factories in the known distributed scheduling literature. Based on this, a multi-objective distributed heterogeneous no-wait flowshop scheduling problem with sequence-dependent setup time(MDHNWFSP-SDST) has been studied. A multi-objective optimization model is established with the objectives of makespan and total tardiness. Based on the MDHNWFSP-SDST feature, a multi-objective discrete artificial bee colony(MODABC) based on pareto optimality is proposed. In MODABC, an improved PWQ heuristic(IPWQ) is designed to initialize the population. IPWQ solves the problems of an order of magnitude and duplicate solutions in PWQ. In the employed bee phase, four neighborhood structures are applied to generate feasible solutions to improve the quality of population. In the onlooker phase, an improved position-based crossover is designed. The superior characteristics of the parents can be retained and the population diversity can be maintained. In the scout phase, a multi-objective local search is embedded to ensure sufficient search of the solution space. Finally, by comparing with other effective multi-objective optimization algorithms, the effectiveness and superiority of the proposed MODABC have been verified.

Key words: distributed no-wait flowshop scheduling, artificial bee colony, heterogeneous, multi-objective optimization

中图分类号: