[1] FREEMAN M D, CROFT A C, NICODEMUS C N, et al. Significant spinal injury resulting from low-level accelerations:a case series of roller coaster in-juries[J]. Archives of Physical Medicine and Rehabilitation, 2005, 86(11):2126-2130. [2] ARAT Y O, VOLPI J, ARAT A, et al. Bilateral internal carotid artery and vertebral artery dissections with retinal artery occlusion after a roller coaster ride-case report and a review[J]. Ulus Travma Acil Cerrahi Derg, 2011, 17(1):75-78. [3] KUSCHYK J, BORGGREFE M, WOLPERT C. Cardiovascular response to a modern roller coaster ride[J]. JAMA, 2007, 298(7):739-741. [4] MANOS D, HAMER O, MÜLLER N L. Pulmonary hemorrhage resulting from bungee jumping[J]. Journal of Thoracic Imaging, 2007, 22(4):358. [5] MICHAEL R A, JAMES C B, ANNETTE G B. US naval flight surgeon's manual[M]. Washington D.C.:U.S. Government Printing Office, 1991. [6] 白净. 血液循环系统仿真[M]. 长春:吉林科学技术出版社, 1995. BAI Jing. Simulation of blood circulation system[M]. Changchun:Jilin Science and Technology Press, 1995. [7] WOOD E H, HOFFMAN E A. The lungs, ‘Achilles Heal’, of air breathers in changing gravitational-inertial force environments[J]. Physiologist, 1984, 1(27):47-48. [8] BURTON R R, SMITH A H. Adaptation to acceleration environments[M]. New York:John Wiley & Sons, Inc., 1996. [9] HREBIEN L. Blood flow measurements under high-g conditions:Early prediction of gz tolerance[R]. NADC 1983-83115-60, 1983. [10] BURNS J W. Re-evaluation of a tilt-back seat as a means of increasing acceleration tolerance[J]. Aviation, Space, and Environmental Medicine, 1975, 46(1):55-63. [11] BURTON R R. Mathematical models for predicting G-level tolerances[J]. Aviation, Space, and Environmental Medicine, 2000, 71(5):506-513. [12] VOGE V M. Comparison of several G-tolerance measuring methods at various seatback angles[J]. Aviation, space, and environmental medicine, 1978, 49(2):377-383. [13] ZUIDEMA, GEORGE D. Gravitational stress in aerospace medicine[M]. London:Little, Brown., 1961. [14] WOOD E H. Some effects of the force environment on the heart, lungs and circulation[J]. Clinical & Investigative Medicine Médecine Clinique Et Experimentale, 1987, 10(5):401-427. [15] 张五星, 詹长录, 耿喜臣. 在加速度作用中的推拉效应[J]. 中华航空航天医学杂志, 1999, 10(1):54-57. ZHANG Wuxing, ZHAN Changlu, GENG Xichen. The push-pull effect during acceleration stress[J]. Chinese Journal of Aerospace Medicine, 1999, 10(1):54-57. [16] LEHR A K, PRIOR A R J, LANGEWOUTERS G, et al. Previous exposure to negative Gz reduces relaxed+ Gz tolerance[J]. Aviation, Space, and Environmental Medicine, 1992, 63(5):405-405. [17] PRIOR A R J. Negative to positive Gz acceleration transition[R]. AGARD, Current Concepts on G-Protection Research and Development 8 p(SEE N 95-3405012-54), 1995. [18] ZHANG W X, ZHAN C L, GENG X C, et al. Decreased+ gz tolerance following lower body positive pressure:Simulated push-pull effect[J]. Aviation, Space, and Environmental Medicine, 2001, 72(11):1045-1047. [19] MICHAUD V J, LYONS T J. The "push-pull effect" and G-induced loss of consciousness accidents in the US Air Force[J]. Aviation, space, and environmental medicine, 1998, 69(11):1104-1106. [20] BANKS R D, GRISSETT J D, SAUNDERS P L, et al. The effect of varying time at-Gz on subsequent +Gz physiological tolerance (push-pull effect)[J]. Aviation, Space and Environmental Medicine, 1995, 66(8):723-727. [21] CHEUNG B, BATEMAN W A. The G transition effect revisited-A broader flight safety threat than Push-Pull'[R]. DCIEM 1999-085, 1999. [22] ASTM F24.24 Standard practice for design of amusement rides and devices:ASTM F2291-2019[S]. New York:ASTM, 2021. [23] CEN/TC 152.Safety of amusement rides and amusement devices.EN13814-2019[S]. Brussels:CEN, 2018. [24] 国家市场监督管理总局, 中国国家标准化管理委员会.大型游乐设施安全规范:GB8408-2018[S]. 北京:中国标准出版社, 2018. State Administration for Market Supervision and Administration, China Standardization Administration. Large-scale amusement device safety code:GB8408-2018[S]. Beijing:China Standard Press, 2018. [25] 陆霞, 王璇, 颜桂定, 等. 高性能战斗机飞行员加速度耐力选拔方法和标准的探讨[J]. 中华航空医学杂志, 1995, 6(1):14-17. LU Xia, WANG Xuan, YAN Guiding, et al. Exploration of screening method and standard for +Gz tolerance of high performance fighter pilots[J]. Chinese Journal of Aerospace Medicine, 1995, 6(1):14-17. [26] 金朝, 耿喜臣, 陆霞, 等. 580例歼击机飞行员的基础+Gz耐力检查结果分析[J]. 中华航空航天医学杂志, 2006, 17(3):185-190. JIN Zhao, GENG Xichen, LU Xia, et al. Analysis of the relaxed +Gz tolerance records of 580 fighter pilots[J]. Chinese Journal of Aerospace Medicine, 2006, 17(3):185-190. [27] 耿喜臣, 颜桂定, 金朝. 航空加速度生理学的研究与应用[J]. 航空军医, 2004, 1(4):189-196. GENG Xichen, YAN Guiding, JIN Zhao. Research and application of aviation acceleration physiology[J]. Flight Surgeon, 2004, 1(4):189-196. [28] 中国人民解放军总后勤部. 飞行员持续性正加速度耐力的检查方法和评定:GJB 3293-1998[S]. 北京:中国人民解放军总后勤部, 1998. General Logistics Department of the Chinese People's Liberation Army. Assessment and teat methods of sustained positive acceleration tolerance for pilots:GJB 3293-1998[S]. Beijing:General Logistics Department of the Chinese People's Liberation Army., 1998. [29] TRIPATHY N K, TYAGI P K. Analysis of multi-axis acceleration profile in a Supermanoeuvrable aircraft[J]. Indian Journal of Aerospace Medicine, 2006, 50(2):7-12. [30] ALBERY W B. Acceleration in other axes affects+ Gz tolerance:Dynamic centrifuge simulation of agile flight[J]. Aviation, Space, and Environmental Medicine, 2004, 75(1):1-6. [31] 徐艳, 雍伟, 卫晓阳. ±Gx或±Gy与+Gz复合作用对人体抗荷耐力的影响[J]. 航天医学与医学工程, 2015, 28(5):336-340. XU Yan, YONG Wei, GENG Xichen.Effects of combining ±Gx or ±Gy with +Gz acceleration on anti-G tolerance[J]. Space Medicine & Medical Engineering, 2015, 28(5):336-340. [32] GREEN N D C. Acute soft tissue neck injury from unexpected acceleration[J]. Aviation, Space, and Environmental Medicine, 2003, 74(10):1085-1090. [33] LEWIS S. Human tolerance to abrupt deceleration[R]. Unpublished notes from the Crash Survival Investigator's School, 1974. [34] 张选斌, 唐勇, 岳洪梅. ±Gx加速度对航母舰载机飞行员的影响及防护对策[J]. 人民军医, 2013, 56(10):1124-1125. ZHANG Xuanbin, TANG Yong, YUE Hongmei. Influence of ±Gx acceleration on pilots of carrier-borne aircraft of aircraft carrier and protective measures[J]. People's Military Surgeon, 2013, 56(10):1124-1125. [35] 柳松杨, 丛红, 王鹤, 等. 军机飞行员的颈部损伤研究[J]. 医用生物力学, 2010, 25(4):262-265. LIU Songyang, CONG Hong, WANG He, et al. Study on neck injuries in military pilots[J]. Journal of Medical Biomechanics, 2010, 25(4):262-265. [36] 包佳仪, 王兴伟, 周前祥, 等. 阻拦着舰过程中飞行员颈部的损伤分析与预测[J]. 北京航空航天大学学报, 2019, 45(3):499-507. BAO Jayi, WANG Xingwei, ZHOU Qianxiang, et al. Analysis and prediction of neck injury of pilots during carrier aircraft arrest deck-landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3):499-507. [37] 徐立. 高性能飞机飞行员非冲击性颈部损伤的研究进展[J]. 中华航空医学杂志, 1996, 7(2):120-122. XU Li. Non-impact cervical injuries in pilots of high performance aircraft[J]. Chinese Journal of Aerospace Medicine, 1996, 7(2):120-122. [38] PANJABI M M, ITO S, IVANCIC P C, et al. Evaluation of the intervertebral neck injury criterion using simulated rear impacts[J]. Journal of Biomechanics, 2005, 38(8):1694-1701. [39] COAKWELL M R, BLOSWICK D S, MOSER R. High-risk head and neck movements at high G and interventions to reduce associated neck injury[J]. Aviation, Space, and Environmental Medicine, 2004, 75(1):68-80. [40] VAN DIJKE G A H, SNIJDERS C J, ROOSCH E R, et al. Analysis of biomechanical and ergonomic aspects of the cervical spine in F-16 flight situations[J]. Journal of Biomechanics, 1993, 26(9):1017-1025. [41] NEWMAN J A, SHEWCHENKO N. A proposed new biomechanical head injury assessment function-the maximum power index[R]. SAE Technical Paper, 2000. [42] ZHANG L L, WANG J Q, QI R R, et al. Motion sickness:current knowledge and recent advance[J]. CNS Neuroscience & Therapeutics, 2016, 22(1):5-24. [43] GOLDING J F. Motion sickness susceptibility[J]. Autonomic Neuroscience, 2006, 129(1-2):67-76. [44] GOLDING J F. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness[J]. Brain Research Bulletin, 1998, 47(5):507-516. [45] 乐燕, 潘竹林, 包瀛春. 心理因素与Coriolis转椅诱发晕动反应的关系[J]. 第二军医大学学报, 2011, 32(9):1042-1043. LE Yan, PAN Zhulin, BAO Yingchun. Relationship of psychological factors with motorized Coriolis rotating chair-induced motion sickness[J]. Academic Journal of Second Military Medical University, 2011, 32(9):1042-1043. [46] 潘磊磊, 祁瑞瑞, 王俊骎, 等. 晕动病前庭生理机制研究进展[J]. 第二军医大学学报, 2016, 37(8):1012-1018. PAN Leilei, QI Ruirui, WANG Junqin, et al. Research progress in vestibular physiological mechanism of motion sickness[J]. Academic Journal of Second Military Medical University, 2016, 37(8):1012-1018. [47] 刘正, 于立身, 王奎年, 等. 阶梯式累加Coriolis加速度刺激法对晕机病易感性的预测[J]. 中华航空航天医学杂志, 1998, 9(2):97-101. LIU Zheng, YU Lishen, WANG Kuinian, et al. Using step up cumulative Coriolis acceleration as a method for predicting air sickness susceptibility[J]. Chinese Journal of Aerospace Medicine, 1998, 9(2):97-101. [48] 谢溯江, 于立身, 贾宏博, 等. 不同强度的科里奥利加速度刺激对人体主观感觉及眼震的影响[J]. 中华航空航天医学杂志, 2001, 12(2):77-80. XIE Sujiang, YU Lishen, JIA Hongbo, et al. The influence of Coriolis acceleration magnitude on human oculomotor and perceptual responses[J]. Chinese Journal of Aerospace Medicine, 2001, 12(2):77-80. [49] 包德海, 曹祚焕, 况友富, 等. 舰艇人员晕船敏感性检查方法研究[C]//中国生理学会第六届应用生理学委员会全国学术会议论文摘要汇编, 2003. BAO Dehai, CAO Zuohuan, KUANG Youfu, et al. A study on sensitivity test of seasickness for ship personnel[C]//Proceedings of the 6th National Conference of Applied Physiology Committee of Chinese Physiological Society, 2003. [50] CLEON L M, LAURIKS G. Evaluation of passenger comfort in railway vehicles[J]. Journal of Low Frequency Noise, Vibration and Active Control, 1996, 15(2):53-69. [51] 国家市场监督管理总局, 中国国家标准化管理委员会. 机械振动与冲击人体暴露于全身振动的评价第1部分一般要求:GB/T 13441.1-2007[S]. 北京:中国标准出版社, 2007. State Administration for Market Supervision and Administration, China Standardization Administration. Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1:General requirements:GB/T 13441.1-2007[S]. Beijing:China Standard Press, 2007. [52] 国家市场监督管理总局, 中国国家标准化管理委员会. 机械振动与冲击人体暴露于全身振动的评价第5部分包含多次冲击的振动的评价方法:GB/T 13441.5-2015[S]. 北京:中国标准出版社, 2015. State Administration for Market Supervision and Administration, China Standardization Administration. Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 5:Method for evaluation of vibration containing multiple shocks:GB/T 13441.5-2015[S]. Beijing:China Standard Press, 2015. [53] LEATHERWOOD J D, DEMPSEY T K, CLEVENSON S A. A design tool for estimating passenger ride discomfort within complex ride environments[J]. Human Factors, 1980, 22(3):291-312. [54] PARK M S, FUKUDA T, KIM T G, et al. Health risk evaluation of whole-body vibration by iso 2631-5 and iso 2631-1 for operators of agricultural tractors and recreational vehicles[J]. Industrial Health, 2013, 51(3):364-370. [55] ALEM N. Application of the new ISO 2631-5 to health hazard assessment of repeated shocks in US army vehicles[J]. Industrial Health, 2005, 43(3):403-412. [56] 刘国强, 董明明, 秦浩. 直升机振动和噪声联合环境对人体的影响[J]. 航空科学技术, 2016, 27(11):30-33. LIU Guoqiang, DONG Mingming, QIN Hao. The effects of helicopter noise and vibration joint environment on the human body[J]. Aeronautical Science & Technology, 2016, 27(11):30-33. [57] LEATHERWOOD J D, CLEVENSON S A, HOLLENBAUGH D D. Evaluation of ride quality prediction methods for helicopter interior noise and vibration environments[R]. NTRS 1984-001-2087, 1984. [58] HAMMOND C E, HOLLENBAUGH D D, CLEVENSON S A, et al. An evaluation of helicopter noise and vibration ride qualities criteria[R]. VA:NASA, 1981. [59] HOLLENBAUGH D D. Quantification of helicopter vibration ride quality using absorbed power measurements[R]. Army Research and Technology Labs Fort Eustis va Applied Technology Lab, 1982. [60] 宗长富, 陈双, 冯刚, 等. 基于频率加权滤波的汽车平顺性评价[J]. 吉林大学学报, 2011, 41(6):517-521. ZONG Changfu, CHEN Shuang, FENG Gang, at al. Evaluation of vehicle ride comfort based on frequency weighted filtering[J]. Journal of Jilin University, 2011, 41(6):517-521. |