[1] TUDOR-LOCKE C,JOHNSON W D,KATZMARZYK P T. Accelerometer-determined steps per day in US adults[J]. Medicine&Science in Sports&Exercise,2009,41(7):1384-1391. [2] CHOI Y,KIM Y,KIM M,et al. Muscle synergies for turning during human walking[J]. Journal of Motor Behavior,2019,51(1):1-9. [3] JIANG S,WANG Y,ZHANG Y,et al. Real time gait recognition system based on kinect skeleton feature[M]. Springer International Publishing,2014. [4] CAPADAY C. The special nature of human walking and its neural control[J]. Trends in Neurosciences,2002,25(7):370-376. [5] O'CONNOR S M,DONELAN J M. Fast visual prediction and slow optimization of preferred walking speed[J]. Journal of Neurophysiology,2012,107(9):2549-2559. [6] 韩亚丽,贾山,王兴松.基于人体生物力学的低功耗踝关节假肢的设计与仿真[J].机器人,2013,35(3):276-282. HAN Yali,JIA Shan,WANG Xingsong. Design and simulation of an ankle prosthesis with lower power based on human biomechanics[J]. ROBOT,2013,35(3):276-282. [7] FARRIS D J,SAWICKI G S. The mechanics and energetics of human walking and running:a joint level perspective[J]. Journal of the Royal Society Interface,2012,9(66):110-118. [8] MOONEY L M,ROUSE E J,HERR H M,et al. Autonomous exoskeleton reduces metabolic cost of human walking[J]. Journal of Neuroengineering and Rehabilitation,2014,11(1):1-6. [9] ZHANG J,FIERS P,WITTE K A,et al. Human-in-the-loop optimization of exoskeleton assistance during walking[J]. Science,2017,356(6344):1280-1284. [10] COLLINS S H,WIGGIN M B,SAWICKI G S,et al. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature,2015,522(7555):212-215. [11] YANDELL M B,TACCA J R,ZELIK K E. Design of a low profile,unpowered ankle exoskeleton that fits under clothes:Overcoming practical barriers to widespread societal adoption[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2019,27(4):712-723. [12] DILLER S,MAJIDI C,COLLINS S H. A lightweight,low-power electroadhesive clutch and spring for exoskeleton actuation[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA),May 16-21,2016,Stockholm,Sweden,2016:682-689. [13] WANG X,GUO S,QU H,et al. Design of a purely mechanical sensor-controller integrated system for walking assistance on an ankle-foot exoskeleton[J]. Sensors,2019,19(14):3196. [14] 任孟沂,曹恩国,赵永武,等.一种被动式外骨骼机械足的结构设计及优化[J].工程设计学报,2020,27(2):199-211. REN Mengyi,CAO Enguo,ZHAO Yongwu,et al. Design and optimization of a passive exoskeleton mechanical foot[J]. Chinese Journal of Engineering Design,2020,27(2):199-211. [15] WANG T M,PEI X,HOU T G,et al. An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance[J]. Frontiers of Information Technology&Electronic Engineering,2020,21(5):723-739. [16] CHANG Y,WANG W,FU C. A lower limb exoskeleton recycling energy from knee and ankle joints to assist push-off[J]. Journal of Mechanisms and Robotics,2020,12(5):1-17. [17] SAWICKI G S,BECK O N,KANG I,et al. The exoskeleton expansion:improving walking and running economy[J]. Journal of Neuro Engineering and Rehabilitation,2020,17(1):17-25. [18] SRINIVASAN M,RUINA A. Computer optimization of a minimal biped model discovers walking and running[J]. Nature,2006,439(7072):72-75. [19] LEVEAU B F,WILLIAMS M. Williams&Lissner's biomechanics of human motion[M]. W.B. Saunders Co.,1992. [20] ISHIKAWA M,KOMI P V,GREY M J,et al. Muscle-tendon interaction and elastic energy usage in human walking[J]. Journal of Applied Physiology,2005,99(2):603-608. [21] FHONEINE J L,SCHIEPPATI M,GAGEY O,et al. The functional role of the triceps surae muscle during human locomotion[J]. Plos One,2013,8(1):e52943. [22] DING Y,GALIANA I,ASBECK A,et al. Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2017,25(2):119-130. [23] YONG J R,SILDER A,DELP S L. Differences in muscle activity between natural forefoot and rearfoot strikers during running[J]. Journal of Biomechanics,2014,47(15):3593-3597. [24] ZELIK K E,HUANG T,ADAMCZYK P G,et al. The role of series ankle elasticity in bipedal walking[J]. Journal of Theoretical Biology,2014,346:75-85. [25] FARRIS D J,SAWICKI G S. Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait[J]. Proceedings of the National Academy of Sciences,2012,109(3):977-982. |