[1] 胡进,侯增广,陈翼雄,等. 下肢康复机器人及其交互控制方法[J]. 自动化学报,2014,40(11):2377-2390. HU Jin,HOU Zengguang,CHEN Yixiong,et al. Lower limb rehabilitation robots and interactive control methods[J]. Acta Automatica Sinica,2014,40(11):2377-2390 [2] 高峰,郭为忠. 中国机器人的发展战略思考[J]. 机械工程学报,2016,52(07):1-5. GAO Feng,GUO Weizhong. Strategic thinking on the development of robots in China[J]. Journal of Mechanical Engineering,2016,52(07):1-5. [3] 汪步云,王月朋,梁艺,等. 下肢外骨骼助力机器人关节驱动设计及试验分析[J]. 机械工程学报,2019,55(23):55-66. WANG Buyun,WANG Yuepeng,LIANG Yi,et al. Joint driving design and experimental analysis of lower limb exoskeleton assisted robot[J]. Journal of Mechanical Engineering,2019,55(23):55-66. [4] 史小华,王洪波,孙利,等. 外骨骼型下肢康复机器人结构设计与动力学分析[J]. 机械工程学报,2014,50(3):41-48. SHI Xiaohua,WANG Hongbo,SUN Li,et al. Design and dynamic analysis of an exoskeletal lower limbs rehabilitation robot[J]. Journal of Mechanical Engineering,2014,50(3):41-48. [5] 范伯骞. 液压驱动下肢外骨骼机器人关键技术研究[D]. 杭州:浙江大学,2017. FAN Boqian. Research on the key technologies of the hydraulic lower limb exoskeleton robot[D]. Hangzhou:Zhejiang University,2017. [6] 杨灿军,陈鹰,路甬祥. 人机一体化智能系统理论及应用研究探索[J]. 机械工程学报,2000(06):42-47. YANG Canjun,CHEN Ying,LU Yongxiang. Research on theory and application of man-machine integrated intelligent system[J]. Journal of Mechanical Engineering,2000(06):42-47. [7] 侯增广,赵新刚,程龙,等. 康复机器人与智能辅助系统的研究进展简[J]. 自动化学报,2016(12):1765-1779. HOU Zengguang,ZHAO Xingang,CHENG Long,et al. Research progress of rehabilitation robot and intelligent assistant system[J],Acta Automatica Sinica,2016(12):1765-1779. [8] 纪仲秋,李建设. 运动生物力学[M]. 北京:高等教育出版社,2001. JI Zhongqiu,LI Jianshe. Biomechanics in sports[M]. Beijing:Higher Education Press,2001. [9] RIENER R,LUNENBURGER L,MAIER I C,et al. Locomotor training in subjects with sensori-motor deficits:an overview of the robotic gait orthosis lokomat[J]. Journal of Healthcare Engineering,2010,1(2):197-216. [10] KIM D H,SHIN Y I,JOA K L,et al. Immediate effect of Walkbot robotic gait training on neuromechanical knee stiffness in spastic hemiplegia:A case report[J]. NeuroRehabilitation,2013,32(4):833-838. [11] 杨玉珊,郑洁皎. C-mill跑台步行适应性训练对脑卒中偏瘫患者平衡功能的影响[C]//第十二届全国生物力学学术会议暨第十四届全国生物流变学学术会议论文摘要汇编,西安. 2018:1. YANG Yushan,ZHENG Jiejiao. Effect of C-mill treadmill walking adaptive training on balance function of stroke patients with hemiplegia[C]//Summary of papers of the 12th National biomechanics academic conference and the 14th National biorheology Academic Conference,Xi'an,China. 2018:1. [12] VUKOBRATOVIC M,BOROVAC B. Zero-moment point-thirty five years of its life[J]. International journal of humanoid robotics,2004,1(01):157-173. [13] BALTRUSCH S J,DIEEN J H,BRUJIN S M,et al. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking[J]. Ergonomics,2019,62(7):903-916. [14] HAMZA M F,GHAZILLA R A R,MUHAMMAD B B,et al. Balance and stability issues in lower extremity exoskeletons:A systematic review[J]. Biocybernetics and Biomedical Engineering,2020,40(4):1666-1679. [15] KARAVAS N,AJOUDANI A,TSAGARAKIS N,et al. Tele-impedance based assistive control for a compliant knee exoskeleton[J]. Robotics and Autonomous Systems,2015,73:78-90. [16] ZEILIG G,WEINGARDEN H,ZWECKER M,et al. Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury:A pilot study[J]. The journal of spinal cord medicine,2012,35(2):96-101. [17] CHINIMILLI P T,SORKHABADI S M R,ZHANG W. Assessment of human dynamic gait stability with a lower extremity assistive device[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2020,28(3):669-678. [18] HART S G,STAVELAND L E. Development of NASA-TLX (Task Load Index):Results of empirical and theoretical research[M]//Advances in psychology. North-Holland,1988,52:139-183. [19] BROOKE J. SUS:A "Quick and Dirty" Usability Scale[J]. Usability Evaluation in Industry,1996,189(194):4-7. [20] CHIARI L,VAN LUMMEL R,BECKER C,et al. Classification of the user's needs,characteristics and scenarios-update[J]. Report from the EU Project (6th Framework Program,IST Contract no. 045622) Sensing and Action to support mobility in Ambient Assisted Living,2009. [21] DEMERS L,WEISS-LAMBROU R,SKA B. The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0):an overview and recent progress[J]. Technology and Disability,2002,14(3):101-105. [22] DEL-AMA A J,GIL-AGUDO Á,PONS J L,et al. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton[J]. Journal of Neuroengineering and Rehabilitation,2014,11(1):1-15. [23] PLATZ T,GILLNER A,BORGWADT N,et al. Device-training for individuals with thoracic and lumbar spinal cord injury using a powered exoskeleton for technically assisted mobility:achievements and user satisfaction[J]. BioMed research international,2016:8459018. [24] PORITZ J M P,TAYLOR H B,FRANCISCO G,et al. User satisfaction with lower limb wearable robotic exoskeletons[J]. Disability and Rehabilitation:Assistive Technology,2019:1-6. [25] KOUMPOUROS Y. A systematic review on existing measures for the subjective assessment of rehabilitation and assistive robot devices[J]. Journal of healthcare engineering,2016(4):1-10. [26] PINTO-FERNANDEZ D,TORRICELLI D,SANCHEZ- VILLAMANAN M et al. Performance evaluation of lower limb exoskeletons:a systematic review[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2020,28(7):1573-1583. [27] 程鑫. 下肢外骨骼机器人的步态评估方法及应用研究[D]. 成都:电子科技大学,2020. CHENG Xin. Research on the method and application of gait assessment of lower limb exoskeleton robot[D]. Chengdu:University of Electronic Science and technology,2020. [28] 李佳璐. 基于用户体验的外骨骼机器人舒适性评估与应用[D]. 武汉:湖北工业大学,2020. LI Jialu. Comfort evaluation and application of exoskeleton robot based on user experience[D]. Wuhan:Hubei University of Technology,2020. [29] JACKCKSON A,CARNEL C,DITUNNO J,et al. Outcome measures for gait and ambulation in the spinal cord injury population[J]. The journal of spinal cord medicine,2008,31(5):487-499. [30] 李浩范. Rivermead运动指数的简要回顾[J]. 国外医学(物理医学与康复学分册),2000(04):189. LI Haofan. Brief review of Rivermead motion index[J]. Foreign medicine (physical medicine and rehabilitation),2000(04):189. [31] 王晓艳. 虚拟现实行走智能跑台训练对脑卒中患者平衡及步行能力的影响[D]. 沈阳:沈阳体育学院,2021. WANG Xiaoyan. Effect of virtual reality walking intelligent treadmill training on balance and walking ability of stroke patients[D]. Shenyang:Shenyang Sport University,2021. [32] SENDEN R,SAVELBERG H,GRIMM B,et al. Accelerometry-based gait analysis,an additional objective approach to screen subjects at risk for falling[J]. Gait & posture,2012,36(2):296-300. [33] GRONLEY J,PERRY J. Gait analysis techniques:Rancho Los Amigos hospital gait laboratory[J]. Physical Therapy,1984,64(12):1831-1838. [34] 胡楠,卢茜,李军,等. 两种步态量表在脑卒中偏瘫步行评定中的评测者间信度[J]. 中国康复理论与实践,2015,21(05):549-551. HU Nan,LU Xi,LI Jun,et al,BI Sheng. Interrater reliability of two gait scales in walking assessment of stroke hemiplegia[J]. Chinese Journal of Rehabilitation Theory and Practice,2015,21(05):549-551. [35] 卢利萍,桑德春,季淑凤. 下肢康复机器人训练对脑卒中偏瘫患者运动能力和日常生活活动能力的影响[J]. 中国康复理论与实践,2016,22(10):1200-1203. LU Liping,SANG Dechun,JI Shufeng. Effect of leg rehabilitation robot training on motor and activities of daily living in hemiplegic patients after stroke[J]. Chinese Journal of Rehabilitation Theory and Practice,2016,22(10):1200-1203. [36] SARKISIAN S V,ISHMAEL M K,LENZI T. Self-Aligning mechanism improves comfort and performance with a powered knee exoskeleton[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2021,29:629-640. [37] SCHIELE A. Ergonomics of exoskeletons:Objective performance metrics[C]//World Haptics 2009-Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,Salt Lake City,UT,USA. IEEE,2009:103-108. [38] AMBROSINI E,FERRANTE S,ROSSINI M,et al. Functional and usability assessment of a robotic exoskeleton arm to support activities of daily life[J]. Robotica,2014,32(8):1213-1224. [39] SAWICKI G S,DOMINGO A,FERRIS D P. The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury[J]. Journal of neuroengineering and rehabilitation,2006,3(1):1-17. [40] LAJEUNESSE V,VINCENT C,ROUTHIER F,et al. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury[J]. Disability and Rehabilitation:Assistive Technology,2016,11(7):535-547. [41] DIJKERS M P,AKERS K G,DIEFFENBACH S,et al. Systematic reviews of clinical benefits of exoskeleton use for gait and mobility in neurologic disorders:a tertiary study[J]. Archives of Physical Medicine and Rehabilitation,2021,102(2):300-313. [42] MURRAY S A,HA K H,GOLDFARB M. An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke,and preliminary assessment thereof[C]//201436th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,Chicago,U.S.A. IEEE,2014:4083-4086. [43] KOZLOWSKI A,BRYCE T,DIJKERS M. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking[J]. Topics in Spinal Cord Injury rehabilitation,2015,21(2):110-121. [44] 谢琪,石艺华,陈丽贤,等. 早期运动康复干预对脊髓损伤患者功能恢复的影响[J]. 广州医学院学报,2009,37(01):24-27. XIE Qi,SHI Yihua,CHEN Lixian,et al. Effect of early exercise rehabilitation intervention on functional recovery of patients with spinal cord injury[J]. Academic Journal of Guangzhou Medical College,2009,37(01):24-27. [45] 莫松海. 基于步态状态机的康复型下肢外骨骼控制策略研究[D]. 上海:华东理工大学,2019. MO Songhai. Research on control strategy of rehabilitative lower limb exoskeleton based on gait state machine[D]. Shanghai:East China University of Science and Technology,2019. [46] 潘大雷. 混联下肢外骨骼的步态规划与控制研究[D]. 上海:上海交通大学,2015. PAN Dalei. Gait planning and control of hybrid lower limb exoskeleton[D]. Shanghai:Shanghai Jiao Tong University,2015. [47] NEUHAUS P D,NOORDEN J H,CRAIG T J,et al. Design and evaluation of Mina:A robotic orthosis for paraplegics[C]//2011 IEEE International Conference on Rehabilitation Robotics,Zurich,Switzerland. IEEE,2011:1-8. [48] SHARMA R,GAUR P,BHATT S,et al. Optimal fuzzy logic-based control strategy for lower limb rehabilitation exoskeleton[J]. Applied Soft Computing,2021,105:107226. [49] SANZ-MERODIO D,CESTARI M,AREVALO J C,et al. Control motion approach of a lower limb orthosis to reduce energy consumption[J]. International Journal of Advanced Robotic Systems,2012,9(6):232. [50] 王晓峰,梁亮. 一种下肢康复机器人步态的生成与调节方法[J]. 控制工程,2021:1-10. WANG Xiaofeng,LIANG Liang. A gait generation and adjustment method of lower limb rehabilitation robot[J]. Control Engineering of China,2021:1-10. [51] HARIB O,HEREID A,Agrawal A,et al. Feedback control of an exoskeleton for paraplegics:Toward robustly stable,hands-free dynamic walking[J]. IEEE Control Systems Magazine,2018,38(6):61-87. [52] YUAN Y,LI Z,ZHAO T,et al. DMP-based motion generation for a walking exoskeleton robot using reinforcement learning[J]. IEEE Transactions on Industrial Electronics,2019,67(5):3830-3839. [53] GURRIET T,FINET S,BOERIS G,et al. Towards restoring locomotion for paraplegics:Realizing dynamically stable walking on exoskeletons[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,2018:2804-2811. [54] RONSSE R,LENZI T,VITIELLO N,et al. Oscillator-based assistance of cyclical movements:model-based and model-free approaches[J]. Medical & Biological Engineering & Computing,2011,49(10):1173-1185. [55] SHARIFI M,MEHR J K,MUSHAHWAR V K,et al. Adaptive CPG-based gait planning with learning-based torque estimation and control for exoskeletons[J]. IEEE Robotics and Automation Letters,2021,6(4):8261-8268. [56] HWANG S H,SUN D I,HAN J,et al. Gait pattern generation algorithm for lower-extremity rehabilitation-exoskeleton robot considering wearer's condition[J]. Intelligent Service Robotics,2021:1-11. [57] LEE D,KANG I,MOLINARO D D,et al. Real-time user-independent slope prediction using deep learning for modulation of robotic knee exoskeleton assistance[J]. IEEE Robotics and Automation Letters,2021,6(2):3995-4000. [58] LIU D X,XU J,CHEN C,et al. Vision-assisted autonomous lower-limb exoskeleton robot[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2019,51(6):3759-3770. [59] LIU D X,WU X,DU W,et al. Deep spatial-temporal model for rehabilitation gait:Optimal trajectory generation for knee joint of lower-limb exoskeleton[J]. Assembly Automation,2017,37(3):369-378. [60] QIN T,YANG Y,WEN B,et al. Research on human gait prediction and recognition algorithm of lower limb-assisted exoskeleton robot[J]. Intelligent Service Robotics,2021,14(3):445-457. [61] FELT W,SELINGER J C,DONELAN J M,et al. "Body-In-The-Loop":Optimizing device parameters using measures of instantaneous energetic cost[J]. plos One,2015,10(8):e0135342. [62] WEI D,LI Z,WEI Q,et al. Human-in-the-loop control strategy of unilateral exoskeleton robots for gait rehabilitation[J]. IEEE Transactions on Cognitive and Developmental Systems,2019,13(1):57-66. [63] 程洪,黄瑞,邱静,等. 康复机器人及其临床应用综述[J]. 机器人,2021,43(05):606-619. CHENG Hong,HUANG Rui,QIU Jing,et al. Summary of rehabilitation robot and its clinical application[J]. Robot,2021,43(05):606-619. [64] 周智雍,钱伟,丁加涛,等. 基于核化运动基元的外骨骼膝关节步态轨迹在线规划[J]. 机器人,2021,43(05):557-566. ZHOU Zhiyong,QIAN Wei,DING Jiatao,et al. Online gait trajectory planning of a knee exoskeleton robot based on kernelized movement primitives[J]. Robot,2021,43(05):557-566. [65] WU X,LIU D X,LIU M,et al. Individualized gait pattern generation for sharing lower limb exoskeleton robot[J]. IEEE Transactions on Automation Science and Engineering,2018,15(4):1459-1470. [66] TUCKER M,NOVOSELLER E,KANN C,et al. Preference-based learning for exoskeleton gait optimization[C]//2020 IEEE International Conference on Robotics and Automation (ICRA),Singapore. IEEE,2020:2351-2357. [67] 莫松海,曹恒,朱钧,等. 基于步态状态机的康复型下肢外骨骼控制方法[J]. 中国科技论文,2018,13(16):1889-1895. MO Songhai,CAO Heng,ZHU Jun,et al. Control method of rehabilitative lower limb exoskeleton based on gait state machine[J]. China Sciencepaper,2018,13(16):1889-1895. [68] YU W,ROSEN J. Neural PID control of robot manipulators with application to an upper limb exoskeleton[J]. IEEE Transactions on Cybernetics,2013,43(2):673-684. [69] ZHONG B,CAO J,MCDAID A,et al. Synchronous position and compliance regulation on a bi-joint gait exoskeleton driven by pneumatic muscles[J]. IEEE Transactions on Automation Science and Engineering,2020,17(4):2162-2166. [70] LU R,LI Z,SU C Y,et al. Development and learning control of a human limb with a rehabilitation exoskeleton[J]. IEEE Transactions on Industrial Electronics,2013,61(7):3776-3785. [71] REN B,LUO X,LI H,et al. Gait trajectory-based interactive controller for lower limb exoskeletons for construction workers[J]. Computer-Aided Civil and Infrastructure Engineering,2022,37(5):558-572. [72] JEBRI A,MADANI T,DJOUANI K,et al. Robust adaptive neuronal controller for exoskeletons with sliding-mode[J]. Neurocomputing,2020,399:317-330. [73] KAZEROONI H,RACINE J L,HUANG L,et al. On the control of the berkeley lower extremity exoskeleton (BLEEX)[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation,Barcelona,Spain. IEEE,2005:4353-4360. [74] YANG Z,ZHU Y,YANG X,et al. Impedance control of exoskeleton suit based on adaptive RBF neural network[C]//2009 International Conference on Intelligent Human-machine Systems and Cybernetics,Hangzhou,China. IEEE,2009,1:182-187. [75] LEE B K, LEE H D, LEE J Y,et al. Development of dynamic model-based controller for upper limb exoskeleton robot[J]. Proceedings-IEEE International Conference on Robotics and Automation,2012:3173-3178. [76] TAGLIAMONTE N L,SERGI F,CARPINO G,et al. Human-robot interaction tests on a novel robot for gait assistance[C]//2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR),Seattle,The United States. IEEE,2013:1-6. [77] TAHERIFAR A,VOSSOUGHI G,SELK GHAFARI A. Optimal target impedance selection of the robot interacting with human[J]. Advanced Robotics,2017,31(8):428-440. [78] KARULKAR R M,WENSING P M. Using footsteps to estimate changes in the desired gait speed of an exoskeleton user[J]. IEEE Robotics and Automation Letters,2021,6(4):6781-6788. [79] PAN C T,CHANG C C,YANG Y S,et al. Development a multi-loop modulation method on the servo drives for lower limb rehabilitation exoskeleton[J]. Mechatronics,2020,68:102360. [80] CAMPBELL S M,DIDUCH C P,SENSINGER J W. Autonomous assistance-as-needed control of a lower limb exoskeleton with guaranteed stability[J]. IEEE Access,2020,8:51168-51178. [81] JEZERNIK S,COLOMBO G,KELLER T,et al. Robotic orthosis lokomat:A rehabilitation and research tool[J]. Neuromodulation:Technology at the Neural Interface,2003,6(2):108-115. [82] BANALA S K,KIM S H,AGRAWAL S K,et al. Robot assisted gait training with active leg exoskeleton (ALEX)[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2008,17(1):2-8. [83] BAUNSGAARD C B,NISSEN U V,BRUST A K,et al. Gait training after spinal cord injury:safety,feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics[J]. Spinal Cord,2018,56(2):106-116. [84] SHI D,ZHANG W,ZHANG W,et al. A review on lower limb rehabilitation exoskeleton robots[J]. Chinese Journal of Mechanical Engineering,2019,32(1):1-11. [85] HARTIGAN C,KANDILAKIS C,DALLEY S,et al. Mobility outcomes following five training sessions with a powered exoskeleton[J]. Topics in Spinal Cord Injury Rehabilitation,2015,21(2):93-99. [86] SANKAI Y. HAL:Hybrid Assistive Limb Based on Cybernics[C]//Robotics Research. Springer,Berlin,Heidelberg,2010:25-34. [87] WALL A,BORG J,PALMCRANTZ S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review[J]. Frontiers in Systems Neuroscience,2015,9:48. [88] JUNG J H,LEE N G,YOU J H,et al. Validity and feasibility of intelligent Walkbot system[J]. Electronics Letters,2009,45(20):1016-1017. [89] HUANG R,CHENG H,QIU J,et al. Learning physical human-robot interaction with coupled cooperative primitives for a lower exoskeleton[J]. IEEE Transactions on Automation Science and Engineering,2019,16(4):1566-1574. [90] LIU D X,WU X,WANG C,et al. Gait trajectory prediction for lower-limb exoskeleton based on deep spatial-temporal model (DSTM)[C]//20172nd International Conference on Advanced Robotics and Mechatronics (ICARM),Hefei,China. IEEE,2017:564-569. [91] 刘笃信. 下肢外骨骼机器人多模融合控制策略研究[D]. 深圳:中国科学院大学(中国科学院深圳先进技术研究院),2018. LIU D X. Research on multimodal fusion-based control strategy for lower-limb exoskeleton robot[D]. Shenzhen:University of Chinese Academy of Sciences (Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences),2018. [92] 尹贵,张小栋,陈江城,等. 下肢康复机器人按需辅助自适应控制方法[J]. 西安交通大学学报,2017,51(10):39-46. YIN G,ZHANG X D,CHEN J C,et al. Approach for adaptive assistance control of lower limb rehabilitation robot according to human need[J]. Journal of Xi'an Jiaotong University,2017,51(10):39-46. [93] 张小栋,陈江城,尹贵. 下肢康复机器人肌电感知与人机交互控制方法[J]. 振动、测试与诊断,2018,38(4):649-657,866. ZHANG X D,CHEN J C,YIN G. An approach for human-robot interactive control of lower limb rehabilitation robot based on surface EMG perception[J]. Journal of Vibration,Measurement & Diagnosis,2018,38(4):649-657,866. [94] 屠尧,朱爱斌,宋纪元,等. 下肢外骨骼康复机器人人机交互力自适应导纳控制[J]. 西安交通大学学报,2019,53(6):9-16. TU Y,ZHU A B,SONG J Y,et al. Adaptive admittance control of man-robot interaction force for lower limb exoskeleton rehabilitation robot[J]. Journal of Xi'an Jiaotong University,2019,53(6):9-16. [95] 杜义浩,邱石,谢平,等. 下肢康复机器人的自适应人机交互控制策略[J]. 自动化学报,2018,44(4):743-750. DU Y H,QIU S,XIE P,et al. Adaptive interaction control for lower limb rehabilitation robots[J]. Acta Automatica Sinica,2018,44(4):743-750. [96] VENEMAN J F,KRUIDHOF R,HEKMAN E E G,et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(3):379-386. [97] STRAUSSER K A,SWIFT T A,ZOSS A B,et al. Mobile exoskeleton for spinal cord injury:Development and testing[C]//Dynamic Systems and Control Conference. Arlington,MA,USA:ASME,2011:419-425. [98] SCHÜTZ A. Robotic exoskeleton:For a better quality of life[EB/OL].[2012-01-31]. http://www.maxonmotor.com/. |