• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (15): 62-70.doi: 10.3901/JME.2021.15.062

• 机器人及机构学 • 上一篇    下一篇

扫码分享

2UPR&2RPS型冗余驱动并联机器人的运动学标定

张俊, 蒋舒佳, 池长城   

  1. 福州大学机械工程及自动化学院 福州 350116
  • 收稿日期:2020-07-27 修回日期:2020-11-19 出版日期:2021-08-05 发布日期:2021-11-03
  • 通讯作者: 张俊(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为机器人机构学、机械传动和机械动力学。E-mail:zhang_jun@fzu.edu.cn
  • 基金资助:
    福建省高校产学合作(2019H6006)、福建省自然科学基金杰青(2020J06010)和机械传动国家重点实验室开放基金(SKLMT-ZDKFKT-202003)资助项目。

Kinematic Calibration of a 2UPR&2RPS Redundantly Actuated Parallel Robot

ZHANG Jun, JIANG Shujia, CHI Changcheng   

  1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116
  • Received:2020-07-27 Revised:2020-11-19 Online:2021-08-05 Published:2021-11-03

摘要: 运动学标定能够有效提高并联机器人的运动精度。以一类2UPR&2RPS型冗余驱动并联机器人为研究对象,提出了该类装置的运动学标定方法。通过将误差闭环矢量方程分别投影到运动支链的驱动方向和约束方向建立了该机器人的几何误差模型,并分离出可补偿误差源和不可补偿误差源。基于误差映射矩阵建立了误差灵敏度指标,随后通过灵敏度分析找出了对末端误差影响较大的不可补偿误差源。利用正则化算法建立了基于激光跟踪仪末端位置测量的几何误差辨识模型。标定试验结果表明,所提出的运动学标定方法是有效的。

关键词: 运动学标定, 冗余驱动并联机构, 误差建模, 灵敏度分析, 误差辨识

Abstract: Kinematic calibration is an effective way to improve the kinematic accuracy of parallel robots. An approach of kinematic calibration is proposed to improve the kinematic accuracy of a 2UPR&2RPS redundantly actuated parallel robot. By projecting the error loop closure equations in the directions of actuation and constraint of each limb, an error model of the robot is established. Based on the established model, the compensable and uncompensable source errors are sorted out. Sensitivity indices are formulated through the derivation of error mapping matrix, based on which a sensitivity analysis is carried out to find out those uncompensable source errors that have relatively "strong" impact on the terminal error. An error identification model is further established by using the regularization method based on a laser tracker. A calibration experiment is performed to verify the validity of the proposed approach.

Key words: kinematic calibration, redundantly actuated parallel robot, error modelling, sensitivity analysis, error identification

中图分类号: