机械工程学报 ›› 2021, Vol. 57 ›› Issue (15): 15-22.doi: 10.3901/JME.2021.15.015
胡佳兴, 赵常捷, 郭为忠
收稿日期:
2020-12-30
修回日期:
2021-04-22
出版日期:
2021-08-05
发布日期:
2021-11-03
通讯作者:
郭为忠(通信作者),男,1970年出生,教授,博士研究生导师。主要研究方向为现代机构学与并联机器人学。E-mail:wzguo@sjtu.edu.cn
作者简介:
胡佳兴,男,1997年出生。主要研究方向为机器人智能装配与机器视觉。E-mail:jiaxing_hu@foxmail.com;赵常捷,男,1989年出生,博士研究生。主要研究方向为机构智能设计。E-mail:zhaochangjie@sjtu.edu.cn
基金资助:
HU Jiaxing, ZHAO Changjie, GUO Weizhong
Received:
2020-12-30
Revised:
2021-04-22
Online:
2021-08-05
Published:
2021-11-03
摘要: 太空桁架在轨装配目前主要依靠值守空间站的航天员完成,开展在轨智能装配作业是未来发展趋势。针对可拓展太空桁架的在轨智能装配问题,对前期所研制新型桁架结构进行装配信息定义,建立桁架装配体编码规则和数据结构,定量描述不同基本单元的特征差异、位姿差异与连接关系,实现杆件和多头球点两类基本单元的独立编号;基于机器人视觉装配作业要求,设计出一套用于存储和提取桁架装配信息的靶标系统,实现桁架基本单元编码与靶标ID之间的映射,将桁架组件的识别与装配信息的提取过程转化为靶标的识别与靶标映射表的检索过程。5 m直立桁架仿真算例验证了所提方法的可行性和有效性。
中图分类号:
胡佳兴, 赵常捷, 郭为忠. 面向在轨智能装配的太空桁架结构编码与靶标系统设计[J]. 机械工程学报, 2021, 57(15): 15-22.
HU Jiaxing, ZHAO Changjie, GUO Weizhong. Component Encoding and Fiducial Marker System Design for the On-orbit Intelligent Assembly of Modular Space Truss Structure[J]. Journal of Mechanical Engineering, 2021, 57(15): 15-22.
[1] BOWMAN L M, BELVIN W K, KOMENDERA E E, et al. In-space assembly application and technology for NASA's future science observatory and platform missions[C]//Space Telescopes and Instrumentation 2018:Optical, Infrared, and Millimeter Wave. International Society for Optics and Photonics, 2018:1069826. [2] DOGGETT W. Robotic assembly of truss structures for space systems and future research plans[C]//Proceedings, IEEE Aerospace Conference. IEEE, 2002:7-7. [3] WILL R W, RHODES M D. Automated assembly system for large space structures[C]//Cooperative Intelligent Robotics in Space. International Society for Optics and Photonics, 1991:60-71. [4] XUE Zhihui, LIU Jinguo, WU Chenchen, et al. Review of in-space assembly technologies[J]. Chinese Journal of Aeronautics, 2020(10):1-27. [5] DORSEY J, DOGGETT W, HAFLEY R, et al. An efficient and versatile means for assembling and manufacturing systems in space[C]//AIAA SPACE 2012 Conference & Exposition, 2012:5115. [6] KOMENDERA E E, DORSEY J. Initial validation of robotic operations for in-space assembly of a large solar electric propulsion transport vehicle[C]//AIAA SPACE and Astronautics Forum and Exposition, 2017:5248. [7] KOMENDERA E, CORRELL N. Precise assembly of 3D truss structures using MLE-based error prediction and correction[J]. The International Journal of Robotics Research, 2015, 34(13):1622-1644. [8] SENDA K, TANI Y. Autonomous robust skill generation using reinforcement learning with plant variation[J]. Advances in Mechanical Engineering, 2014, 6:276264. [9] Scholz-Reiter B, Freitag M. Autonomous processes in assembly systems[J]. CIRP annals, 2007, 56(2):712-729. [10] YANG S, WEN H, HU Y, et al. Coordinated motion control of a dual-arm space robot for assembling modular parts[J]. Acta Astronautica, 2020, 177:627-638. [11] LU Y, HUANG Z, ZHANG W, et al. Experimental investigation on automated assembly of space structure from cooperative modular components[J]. Acta Astronautica, 2020, 171:378-387. [12] LIGHTBODY P, KRAJNÍK T, HANHEIDE M. An efficient visual fiducial localisation system[J]. ACM SIGAPP Applied Computing Review, 2017, 17(3):28-37. [13] KROGIUS M, HAGGENMILLER A, OLSON E. Flexible layouts for fiducial tags[C]//IROS, 2019:1898-1903. [14] ROMERO-RAMIREZ F J, MUÑOZ-SALINAS R, MEDINA-CARNICER R. Speeded up detection of squared fiducial markers[J]. Image and vision Computing, 2018, 76:38-47. [15] GARRIDO-JURADO S, MUÑOZ-SALINAS R, MADRID-CUEVAS F J, et al. Automatic generation and detection of highly reliable fiducial markers under occlusion[J]. Pattern Recognition, 2014, 47(6):2280-2292. [16] 陈杉. 物体位姿单目视觉测量系统的研究[D]. 天津:天津大学, 2007.CHEN Shan. Research on monocular vision measurement system of position and orientation of object[D]. Tianjin:Tianjin University, 2007. [17] 初广丽. 航天器合作靶标自动识别关键技术研究[D]. 长春:中国科学院研究生院(长春光学精密机械与物理研究所), 2015.CHU Guangli, Study on the key technologies of automatic identification for cooperative target on spacecraft[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015. [18] HAMNER B, KOTERBA S, SHI J, et al. An autonomous mobile manipulator for assembly tasks[J]. Autonomous Robots, 2010, 28(1):131. [19] 季旭全, 王君臣, 赵江地, 等. 基于机器人与视觉引导的星载设备智能装配方法[J]. 机械工程学报, 2018, 54(23):77-86.JI Xuquan, WANG Junchen, ZHAO Jiangdi, et al. Intelligent robotic assembly method of spaceborne equipment based on visual guidance[J]. Journal of Mechanical Engineering, 2018, 54(23):77-86. [20] AVOLA D, CINQUE L, FORESTI G L, et al. A practical framework for the development of augmented reality applications by using ArUco markers[C]//International Conference on Pattern Recognition Applications and Methods. SCITEPRESS, 2016:645-654. [21] GARRIDO-JURADO S, MUNOZ-SALINAS R, MADRID-CUEVAS F J, et al. Generation of fiducial marker dictionaries using mixed integer linear programming[J]. Pattern Recognition, 2016, 51:481-491 |
[1] | 赵欣, 黄金杰. 基于RSM-RVEA的FDM增材制造工艺参数优化方法[J]. 机械工程学报, 2024, 60(19): 277-297. |
[2] | 于金须, 闫建华, 王孝冉, 张立杰, 谢平, 李永泉. 一种人机共融的手指外骨骼机器人设计与验证[J]. 机械工程学报, 2024, 60(17): 102-110. |
[3] | 牟德君, 陈先岭, 常雪龙, 胡波. (2-UPU+SPR)+(2-UPU+RPS)非对称混联机构末端约束及自由度分析[J]. 机械工程学报, 2024, 60(17): 272-282. |
[4] | 于金须, 闫建华, 肖俊明, 李永泉, 谢平, 张立杰. 基于医工结合的指关节运动学模型建立与验证[J]. 机械工程学报, 2024, 60(15): 149-159. |
[5] | 吴震, 李秦川, 叶伟. 基于固有频率的运动冗余并联机构位置逆解优选方法[J]. 机械工程学报, 2024, 60(13): 297-307. |
[6] | 徐文琳, 彭羽, 何智成, 姜潮. 复杂路径规划的机构分区运动学拓扑构型设计[J]. 机械工程学报, 2024, 60(11): 62-73. |
[7] | 刘伟, 刘宏昭. 非结式消元7R双环球面机构运动学位移分析[J]. 机械工程学报, 2024, 60(7): 45-53. |
[8] | 畅博彦, 韩芳孝, 周杨, 金国光. 面向精梳任务的高速变胞机构冲击动力学研究[J]. 机械工程学报, 2024, 60(7): 54-65. |
[9] | 张雷雷, 赵延治, 赵铁石. 并联机构瞬轴面研究进展[J]. 机械工程学报, 2023, 59(21): 131-146. |
[10] | 姚鹏飞, 吕胜男, 张武翔, 丁希仑. 基于正四棱台Bricard单元的双环可展开天线机构构型设计[J]. 机械工程学报, 2023, 59(21): 147-156. |
[11] | 陆晨浩, 陈耀, 何若琪, 范维莹, 冯健. 基于深度神经网络的四折痕锥形折纸结构设计[J]. 机械工程学报, 2023, 59(21): 167-176. |
[12] | 占金青, 晏家坤, 蒲圣鑫, 朱本亮, 刘敏. 基于等几何分析的电热驱动柔顺机构拓扑优化设计[J]. 机械工程学报, 2023, 59(21): 177-187. |
[13] | 刘辛军, 于靖军, 谢福贵, 赵慧婵, 孟齐志. 行为机构学与高端装备创新设计[J]. 机械工程学报, 2023, 59(19): 202-212. |
[14] | 李海虹, 董晋安, 郭山国, 刘志奇. 动/静平台非一致型并联机构构型分析及设计方法[J]. 机械工程学报, 2023, 59(17): 116-125. |
[15] | 杨逸波, 汪满新. R(RPS&RP)&2-UPS并联机构位置精度可靠性建模与分析[J]. 机械工程学报, 2023, 59(15): 62-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||