• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (11): 69-77.doi: 10.3901/JME.2021.11.069

• 特邀专栏:生物组织精准手术器械设计制造 • 上一篇    下一篇

扫码分享

骨组织超声辅助切削切屑形成与裂纹扩展机理

柏伟1,2, 潘鹏飞1, 舒利明3, 王栋4, 张建国1,5, 许剑锋1,2   

  1. 1. 华中科技大学机械科学与工程学院 武汉 430074;
    2. 华中科技大学数字制造装备与技术国家重点实验室 武汉 430074;
    3. 东京大学工学院机械工程系 东京 1138656;
    4. 埃克塞特大学工程、数学和物理科学学院 埃克塞特EX4 4QF;
    5. 深圳华中科技大学研究院 深圳 518057
  • 收稿日期:2020-12-01 修回日期:2021-01-05 出版日期:2021-07-23 发布日期:2021-07-23
  • 通讯作者: 许剑锋(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为超精密与智能制造、医疗器械制造与装备。E-mail:jfxu@hust.edu.cn
  • 作者简介:柏伟,男,1990年出生,博士。主要研究方向为生物制造与医疗装备、精密制造与超声加工。E-mail:wbai@hust.edu.cn
  • 基金资助:
    国家自然科学基金(52005199)、中国博士后科学基金(2019M652629,2019TQ0107)和深圳市基础研究重点(JCYJ20200109150425085)资助项目。

Mechanism of Chip Formation and Crack Propagation in Ultrasonically Assisted Cutting of Bone Tissue

BAI Wei1,2, PAN Pengfei1, SHU Liming3, WANG Dong4, ZHANG Jianguo1,5, XU Jianfeng1,2   

  1. 1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074;
    2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074;
    3. Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo 1138656 Japan;
    4. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF United Kingdom;
    5. Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057
  • Received:2020-12-01 Revised:2021-01-05 Online:2021-07-23 Published:2021-07-23

摘要: 骨组织高效、低负荷、低损伤切削去除对外科手术具有重要意义。然而,皮质骨的硬脆性和各向异性使得骨切削过程极易产生不规则的裂纹扩展、大块断裂切屑及骨表面损伤,严重影响组织的高精高效去除和术后恢复。基于正交切削过程研究了皮质骨普通切削与超声辅助切削切屑形成、裂纹扩展和切削力的差异,并基于扩展有限元法建立了考虑微观结构的皮质骨切削模型,分析了骨组织超声辅助切削裂纹萌生与扩展规律。结果表明:骨组织普通切削过程不同切削方向裂纹扩展规律不同,产生大块断裂切屑且表面损伤严重,而超声辅助切削过程裂纹主要沿主剪切方向扩展,且产生小尺寸三角形切屑并迅速脱离刀具前刀面;骨组织超声辅助切削相比普通切削主切削力显著降低近70%。原因是高频冲击切削过程产生的高应变率致使裂纹穿透骨单元扩展而非在骨单元外周的骨粘合线偏转,从而使裂纹主要沿主剪切面扩展而去除切屑,产生与普通切削不同的切屑形态、更小的切削力和更低的损伤。本研究对于揭示骨组织超声冲击切削机理、创成低损伤骨切除器械具有重要的理论意义与临床价值。

关键词: 骨组织, 超声辅助切削, 切屑形成, 裂纹扩展, 扩展有限元法

Abstract: Bone cutting with higher efficiency, and lower forces and damage has great benefits for orthopaedic surgeries. However, the hardness, brittleness and anisotropy of cortical bones make it easy to produce irregular crack propagation, large fractured chips and surface damage during the bone cutting, which seriously affects the cutting precision and the removal of tissues and the postoperative recovery. Based on the orthogonal cutting process, the differences of chip formation, crack propagation and cutting force between conventional and ultrasonically assisted cutting of cortical bones have been investigated. A cutting model of the cortical bone based on the extended finite element method considering microstructures was established, and the law of crack initiation and propagation in ultrasonically assisted cutting was analyzed. The results show that the law of crack propagation is different in various cutting directions of bone, and large pieces of fractured chips and serious surface damage are produced in conventional cutting. In ultrasonically assisted cutting, the cracks mainly propagate along the main shear direction, and produce small triangular chips which quickly leave the tool rake face. Compared with the conventional cutting, the main cutting force of ultrasonically assisted cutting is significantly reduced by nearly 70%. The reason is that the high strain rate produced by the high-frequency impact cutting causes the direct penetration of fractures across the osteonal matrix without deflections along the cement lines. So, the crack mainly propagates along the main shear plane and removes the chip, resulting in different chip morphology, reduced cutting forces and lower damage compared with the conventional cutting. The results of this study made significant contributions in theoretical and practical values to revealing the mechanism of ultrasonically assisted cutting and supporting the innovation in surgical instruments.

Key words: cortical bone, ultrasonically assisted cutting, chip formation, crack propagation, extended finite element method

中图分类号: