• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (9): 19-27.doi: 10.3901/JME.2021.09.019

• 机器人及机构学 • 上一篇    下一篇

扫码分享

融合前馈与姿态预测的并联稳定平台自抗扰控制策略

郑怀航1,2, 王军政1,2, 刘冬琛1,2, 汪首坤1,2   

  1. 1. 北京理工大学复杂系统智能控制与决策国家重点实验室 北京 100081;
    2. 北京理工大学伺服运动系统驱动与控制工信部重点实验室 北京 100081
  • 收稿日期:2020-05-26 修回日期:2020-08-15 出版日期:2021-05-05 发布日期:2021-06-15
  • 通讯作者: 王军政(通信作者),男,1964年出生,博士,教授,博士研究生导师。主要研究方向为伺服运动驱动与控制、机器人控制和负载模拟与静动态试验。E-mail:wangjz@bit.edu.cn
  • 作者简介:郑怀航,男,1997年出生,博士研究生。主要研究方向为机器人伺服运动驱动与控制。E-mail:ss8zzhhhang@163.com
  • 基金资助:
    国家自然科学基金资助项目(51675041)。

Active Disturbance Rejection Control Strategy of Parallel Stable Platform Based on Feedforward and Attitude Prediction

ZHENG Huaihang1,2, WANG Junzheng1,2, LIU Dongchen1,2, WANG Shoukun1,2   

  1. 1. Key Laboratory of Complex System Intelligent Control and Decision, Beijing Institute of Technology, Beijing 100081;
    2. Key Laboratory of Servo Motion System Drive and Control, Beijing Institute of Technology, Beijing 100081
  • Received:2020-05-26 Revised:2020-08-15 Online:2021-05-05 Published:2021-06-15

摘要: 针对并联式结构平台姿态稳定时对高频扰动信号跟踪的响应滞后以及负载、摩擦力等非线性因素等影响稳定精度问题,提出了一种融合前馈与姿态预测的并联稳定平台自抗扰控制(Active disturbance rejection control,ADRC)控制策略。通过对电动伺服缸、平台运动学建模,得到了电动伺服缸状态方程和平台稳定时电动缸位移与电动机电流控制量转化关系。基于ADRC扩张状态观测器对伺服电动缸在时变摩擦力和负载力等干扰下进行观测并补偿,并采用非线性跟踪微分器改善控制过程中电动机的超速报警与快速性之间的矛盾。最后将姿态预测方程与前馈控制相结合,提高了系统的响应速度,减小了稳定平台跟踪误差。在具有俯仰、横滚和垂直平移三个自由度的并联式稳定平台上进行仿真与试验,相比传统PID或ADRC控制方法,提出的控制策略不仅使稳定平台有很强的抗负载扰动能力,而且具有更快的响应速度和更高的稳定精度。

关键词: 稳定平台, 自抗扰控制, 前馈, 姿态预测

Abstract: This research proposes an active disturbance rejection control (ADRC) method with a feed-forward compensator for a parallel stability platform based on its attitude prediction model. The time delay of the control system responding to high frequency inputs and the nonlinear disturbances arising from loading conditions and frictions are considered to improve the tracking performance. Through analyzing the dynamics of the electric cylinders and the kinematics of the parallel mechanism, the control model in state space together with the kinematic inverse model of the system are introduced. An extended state observer (ESO) is designed to observe the nonlinear disturbances of friction behaviors and loading conditions, and the non-linear tracking differentiator (TD) is used to realize a rapidly response of the electric cylinders without overspeed alarm. With the observation results and the TD, a closed-loop controller with a feed-forward compensator based on the attitude prediction model of the platform is presented to improve tracking accuracy and response speed. The control method is verified on a 3 degree-of-freedom (DOF) parallel stability platform, and comparative experimental results indicate that under different loading conditions, the proposed controller can achieve satisfactory tracking performance for the 3-DOF platform with an increased response speed and a reduced tracking error.

Key words: stability platform, active disturbance rejection control, feedforward, attitude prediction

中图分类号: