机械工程学报 ›› 2021, Vol. 57 ›› Issue (2): 121-138.doi: 10.3901/JME.2021.02.121
周文雅1, 张宗宇1, 王晓明2, 吕维梁1, 钱卫1
收稿日期:
2020-01-22
修回日期:
2020-08-11
出版日期:
2021-01-20
发布日期:
2021-03-15
通讯作者:
张宗宇(通信作者),男,1995年出生。主要研究方向为飞行器动力学与控制。E-mail:z18042654126@163.com
作者简介:
周文雅,男,1981年出生,博士,副教授。主要研究方向为飞行器动力学与控制。E-mail:zwy@dlut.edu.cn
基金资助:
ZHOU Wenya1, ZHANG Zongyu1, WANG Xiaoming2, Lü Weiliang1, QIAN Wei1
Received:
2020-01-22
Revised:
2020-08-11
Online:
2021-01-20
Published:
2021-03-15
摘要: 变形机翼能够根据飞行工况的变化,主动调节自身形状以改善飞行器任务适应性,是未来飞行器设计的研究前沿与热点。阐述国内外机翼中小尺度主动变形技术的研究进展,围绕机翼设计中柔顺变形能力与气动承载能力间冲突,对现阶段变翼型弯度、变厚度和扭转变形机翼中的机械变形结构设计方案进行重点分析探讨。对变形机翼设计中变形蒙皮、轻质高输出驱动系统、协调变形控制系统设计等关键技术的研究瓶颈及技术方案进行阐述分析,探讨变形机翼未来发展方向,为变形机翼设计与工程应用提供技术参考。
中图分类号:
周文雅, 张宗宇, 王晓明, 吕维梁, 钱卫. 机翼中小尺度主动变形研究进展及关键技术[J]. 机械工程学报, 2021, 57(2): 121-138.
ZHOU Wenya, ZHANG Zongyu, WANG Xiaoming, Lü Weiliang, QIAN Wei. Research Progress and Key Techniques of Active Morphing Wing at Medium and Small Scales[J]. Journal of Mechanical Engineering, 2021, 57(2): 121-138.
[1] 白鹏,陈钱,徐国武,等,智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报,2019,37(3):426-443. BAI Peng,CHEN Qian,XU Guowu,et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica,2019,37(3):426-443. [2] 冷劲松,孙健,刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报,2014,35(1):29-45. LENG Jinsong,SUN Jian,LIU Yanju. Application status and future prospect of smart materials and structures in morphing air-craft[J]. Acta Aeronautica et Astronautica Sinica. 2014,35(1):29-45. [3] CIARELLA A,TSOTSKAS C,HAHN M,et al. A Multi-fidelity,multi-disciplinary analysis and optimization framework for the design of morphing UAV wing[C]//16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Dallas,2015:2326. [4] BUBERT E A,WOODS B K S,LEE K,et al. Design and fabrication of a passive 1D morphing aircraft skin[J]. Journal of Intelligent Material Systems and Structures,2010,21(17):1699-1717. [5] PERRY Ⅲ B,COLE S R,MILLER G D. Summary of an active flexible wing program[J]. Journal of Aircraft,1995,32(1):10-15. [6] BONNEMA K,SMITH S. AFTI/F-111 mission adaptive wing flight research program[C]//4th Flight Test Conference,1988:2118. [7] PENDLETON E W,BESSETTE D,FIELD P B,et al. Active aeroelastic wing flight research program:technical program and model analytical development[J]. Journal of Aircraft,2000,37(4):554-561. [8] KUDVA J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures,2004,15(4):261-267. [9] YAMAN Y. Combined morphing assessment software using flight envelope data and mission based morphing prototype wing development,change:An overview presentation[C/CD]//3rd EASN international workshop on aerostructures,Milano,Italy,2013. [10] Smart intelligent aircraft structures (SARISTU):Proceedings of the final project conference[M]. Springer,2015. [11] LAFLEUR J,OLDS J,BRAUN R. Daedalon:A revolutionary morphing spacecraft design for planetary exploration[C]//1st Space Exploration Conference:Continuing the Voyage of Discovery,2005:2771. [12] BARBARINO S,BILGEN O,AJAJ R M,et al. A review of morphing aircraft[J]. Journal of intelligent material systems and structures,2011,22(9):823-877. [13] WEISSHAAR T A. Morphing aircraft systems:Historical perspectives and future challenges[J]. Journal of Aircraft,2013,50(2):337-353. [14] SOFLA A Y N,MEGUID S A,TAN K T,et al. Shape morphing of aircraft wing:Status and challenges[J]. Materials & Design,2010,31(3):1284-1292. [15] LI D,ZHAO S,DA RONCH A,et al. A review of modellingand analysis of morphing wings[J]. Progress in Aerospace Sciences,2018,100:46-62. [16] MONNER H P. Realization of an optimized wing camber by using formvariable flap structures[J]. Aerospace Science and Technology,2001,5(7):445-455. [17] POONSONG P. Design and analysis of a multi-section variable camber wing[D]. MD:University of Maryland,2004. [18] MEGUID S A,SU Y,WANG Y. Complete morphing wing design using flexible-rib system[J]. International Journal of Mechanics and Materials in Design,2017,13(1):159-171. [19] 李刚. 含复铰可连续变弯度机翼机构设计与优化研究[D]. 哈尔滨:哈尔滨工业大学,2017. LI Gang. Design and optimization of camber Continuously morphing wing mechanism with multiple joints[D]. Harbin:Harbin Institute of Technology,2017. [20] KOTA S,HETRICK J A,OSBORN R,et al. Design and application of compliant mechanisms for morphing aircraft structures[C]//Proceedings of SPIE 5054,Smart Structures and Materials 2003:Industrial and Commercial Applications of Smart Structures Technologies,2003,5054:24-34. [21] JOO J J,MARKS C R,ZIENTARSKI L,et al. Variable camber compliant wing-design[C]//23rd AIAA/AHS Adaptive Structures Conference. Kissimmee,2015:1050. [22] YOUNGREN H. Multi-point design and optimization of an natural laminar flow airfoil for a mission adaptive compliant wing[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno,2008:293. [23] HETRICK J,OSBORN R,KOTA S,et al. Flight testing of mission adaptive compliant wing[C]//AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference. Honolulu,2007. [24] MILLER E J,CRUZ J,LUNG S,et al. Evaluation of the hinge moment and normal force aerodynamic loads from a seamless adaptive compliant trailing edge flap in flight[C]//AIAA Aerospace Sciences Meeting. San Diego,2015. [25] CAMPANILE L F,SACHAU D. The belt-rib concept:A structronic approach to variable amber[J]. Journal of Intelligent Material Systems and Structures,2000,11(3):215-224. [26] HASSE A,ZUEST I,CAMPANILE L F. Modal synthesis of belt-rib structures[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2011,225(3):722-732. [27] YOKOZEKI T,TAKEDA S,OGASAWARA T,et al. Mechanical properties of corrugated composites for candidate materials of flexible wing structures[J]. Composites Part A:Applied Science and Manufacturing,2006,37(10):1578-1586. [28] YOKOZEKI T,SUGIURA A,HIRANO Y. Development and wind tunnel test of variable camber morphing wing[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. National Harbor,Maryland,2014:1261. [29] YOKOZEKI T,SUGIURA A,HIRANO Y. Development of variable camber morphing airfoil using corrugated structure[J]. Journal of Aircraft,2014,51(3):1023-1029. [30] PREVITALI F,ARRIETA A F,ERMANNI P. Double-walled corrugated structure for bending-stiff anisotropic morphing skins[J]. Journal of Intelligent Material Systems and Structures,2015,26(5):599-613. [31] PREVITALI F,MOLINARI G,ARRIETA A F,et al. Design and experimental characterization of a morphing wing with enhanced corrugated skin[J]. Journal of Intelligent Material Systems and Structures,2016,27(2):278-292. [32] MATTEO N D,GUO S,AHMED S,et al. Design and analysis of a morphing flap structure for high lift wing[C]//AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,& Materials Conference AIAA/ASME/AHS Adaptive Structures Conference. Orlando,2010. [33] MATTEO N D,GUO S. Morphing trailing edge flap for high lift wing[C]//AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference. Denver,2011. [34] EVANS C,HARMER M,MARKS O,et al. Development and testing of a variable camber morphing wing mechanism[C]//2nd International Symposium on Sustainable Aviation. Istanbul,2016. [35] LOUDON K,BOUFERROUK A,COLEMAN B,et al. Further development of a variable camber morphing mechanism using the direct control airfoil geometry concept[C]//International Symposium on Sustainable Aviation 2018. Rome,2018. [36] WOODS B K S,DAYYANI I,FRISWELL M I. Fluid/structure-interaction analysis of the fish-bone-active-camber morphing concept[J]. Journal of Aircraft,2014,52(1):307-319. [37] DAYYANI I,KHODAPARAST H H,WOODS B K S,et al. The design of a coated composite corrugated skin for the camber morphing airfoil[J]. Journal of Intelligent Material Systems and Structures,2015,26(13):1592-1608. [38] WOODS B K S,FRISWELL M I. Multi-objective geometry optimization of the fish bone active camber morphing airfoil[J]. Journal of Intelligent Material Systems and Structures,2016,27(6):808-819. [39] WOODS B K S,KOTHERA C S,SIROHI J,et al. Pneumatic artificial muscles for trailing edge flap actuation:A feasibility study[J]. Smart Materials and Structures,2011,20(10):105021. [40] JACOB J D,SIMPSON A,SMITH S. Design and flight testing of inflatable wings with wing warping[R]. SAE,2005. [41] JACOB J,SMITH S. Design of hale aircraft using inflatable wings[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno,2008:167. [42] USHER T D,ULIBARRI K R,CAMARGO G S. Piezoelectric microfiber composite actuators for morphing wings[J]. ISRN Materials Science,2013,2013:1-8. [43] PEEL L D,MEJIA J,NARVAEZ B,et al. Development of a simple morphing wing using elastomeric composites as skins and actuators[J]. Journal of Mechanical Design,2009,131(9):091003. [44] DIACONU C G,WEAVER P M,MATTIONI F. Concepts for morphing airfoil sections using bi-stable laminated composite structures[J]. Thin-Walled Structures,2008,46(6):689-701. [45] DAYNES S,WEAVER P M,POTTER K D. Aeroelastic study of bistable composite airfoils[J]. Journal of Aircraft,2009,46(6):2169-2174. [46] DAYNES S,NALL S J,WEAVER P M,et al. Bistable composite flap for an airfoil[J]. Journal of Aircraft,2010,47(1):334-338. [47] KUDER I K,FASEL U,ERMANNI P,et al. Concurrent design of a morphing aerofoil with variable stiffness bi-stable laminates[J]. Smart Materials and Structures,2016,25(11):115001. [48] BILGEN O,KOCHERSBERGER K,DIGGS E,et al. Morphing wing micro-air-vehicles via macro-fiber-composite actuators[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Honolulu,2007:1785. [49] BILGEN O,KOCHERSBERGER K B,INMAN D J,et al. Novel,bidirectional,variable-camber airfoil via macro-fiber composite actuators[J]. Journal of Aircraft,2010,47(1):303-314. [50] BILGEN O,FRISWELL M I. Piezoceramic composite actuators for a solid-state variable-camber wing[J]. Journal of Intelligent Material Systems and Structures,2014,25(7):806-817. [51] WRIGHT C,BILGEN O. A piezocomposite trailing-edge for subsonic aircraft[C]//ASME 2018 Conference on Smart Materials,Adaptive Structures and Intelligent Systems. San Antonio,2018:V001T04A007-V001T04A007. [52] PANKONIEN A,INMAN D J. Experimental testing of spanwise morphing trailing edge concept[C]//Active and Passive Smart Structures and Integrated Systems 2013. International Society for Optics and Photonics,San Diego,2013,8688:868815. [53] PREVITALI F,ARRIETA A F,ERMANNI P. Performance of a three-dimensional morphing wing and comparison with a conventional wing[J]. AIAA Journal,2014,52(10):2101-2113. [54] MOLINARI G,QUACK M,ARRIETA A F,et al. Design,realization and structural testing of a compliant adaptable wing[J]. Smart Materials and Structures,2015,24(10):105027. [55] WLEZIEN R,HORNER G,MCGOWAN A,et al. The aircraft morphing program[C]//39th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference and Exhibit. Long Beach,1998:1927. [56] BARTLEY-CHO J D,WANG D P,MARTIN C A,et al. Development of high-rate,adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J]. Journal of Intelligent Material Systems and Structures,2004,15(4):279-291. [57] 刘卫东. 变形机翼关键技术的研究[D]. 南京:南京航空航天大学,2014. LIU Weidong. Research on key technology of morphing Wing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2014. [58] ELZEY D M,SOFIA A Y N,WADLEY H N G. A bio-inspired high-authority actuator for shape morphing structures[C]//Proceedings of SPIE 5053,Smart Structures and Materials 2003:Active Materials:Behavior and Mechanics,2003,5053:92-101. [59] BARBARINO S,PECORA R,LECCE L,et al. A novel SMA-based concept for airfoil structural morphing[J]. Journal of Materials Engineering and Performance,2009,18(5-6):696-705. [60] GONG X,LIU L,SCARPA F,et al. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications[J]. Smart Materials and Structures,2017,26(3):035052. [61] ASHIR M,HINDAHL J,NOCKE A,et al. Development of an adaptive morphing wing based on fiber-reinforced plastics and shape memory alloys[J]. Journal of Industrial Textiles,2019:1528083718823295. [62] SUN J,GUAN Q,LIU Y,et al. Morphing aircraft based on smart materials and structures:A state-of-the-art review[J]. Journal of Intelligent Material Systems and Structures,2016,27(17):2289-2312. [63] 陈以金. 变体飞行器柔性蒙皮及支撑结构性能研究[D]. 哈尔滨:哈尔滨工业大学,2014. CHEN Yijin. Study on flexible skin and supporting substructure of morphing aircraft[D]. Harbin:Harbin Institute of Technology,2014. [64] CHEN S,CHEN Y,ZHANG Z,et al. Experiment and analysis of morphing skin embedded with shape memory polymer composite tube[J]. Journal of Intelligent Material Systems and Structures,2014,25(16):2052-2059. [65] 冯宁. 基于气动肌肉纤维的主动变形蒙皮结构性能研究[D]. 哈尔滨:哈尔滨工业大学,2016. FENG Ning. Analysis of active morphing skin Structures based on pneumatic muscle fibers[D]. Harbin:Harbin Institute of Technology,2016. [66] KOREANSCHI A,GABOR O S,ACOTTO J,et al. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speed,Part I-Aerodynamic optimization using genetic,bee colony and gradient descent algorithms[J]. Chinese Journal of Aeronautics,2017,30(1):149-163. [67] KOREANSCHI A,GABOR O S,ACOTTO J,et al. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds,Part Ⅱ-Experimental validation using Infra-Red transition measurement from wind tunnel tests[J]. Chinese Journal of Aeronautics,2017,30(1):164-174. [68] AUSTIN F,ROSSI M J,VAN NOSTRAND W,et al. Static shape control for adaptive wings[J]. AIAA Journal,1994,32(9):1895-1901. [69] COUTU D,BRAILOVSKI V,TERRIAULT P,et al. Experimental validation of the 3D numerical model for an adaptive laminar wing with flexible extrados[C]//18th International Conference of Adaptive Structures and Technologies. Ottawa,2007. [70] POPOV A V,BOTEZ R M,LABIB M. Transition point detection from the surface pressure distribution for controller design[J]. Journal of Aircraft,2008,45(1):23-28. [71] GRIGORIE T L,BOTEZ R M,POPOV A V. Adaptive neuro-fuzzy controllers for an open-loop morphing wing system[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2009,223(7):965-975. [72] POPOV A V,GRIGORIE L T,BOTEZ R M,et al. Closed-loop control validation of a morphing wing using wind tunnel tests[J]. Journal of Aircraft,2010,47(4):1309-1317. [73] KAMMEGNE M J T,BOTEZ R M,GRIGORIE L T,et al. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing[J]. Chinese Journal of Aeronautics,2017,30(2):561-576. [74] KAMMEGNE M J T,GRIGORIE L T,BOTEZ R M,et al. Design and wind tunnel experimental validation of a controlled new rotary actuation system for a morphing wing application[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2016,230(1):132-145. [75] 孙健. 基于SMPC蒙皮和主动蜂窝结构的可变形机翼结构研究[D]. 哈尔滨:哈尔滨工业大学,2015. SUN Jian. Investigation on morphing wing structures based on shape memory polymer composite (SMPC) skins and active honeycomb structures[D]. Harbin:Harbin Institute of Technology,2015. [76] BUDARAPU P R,NATARAJAN R. Design concepts of an aircraft wing:Composite and morphing airfoil with auxetic structures[J]. Frontiers of Structural and Civil Engineering,2016,10(4):394-408. [77] PECORA R,AMOROSO F,LECCE L. Effectiveness of wing twist morphing in roll control[J]. Journal of Aircraft,2012,49(6):1666-1674. [78] KUDVA J N,SANDERS B P,PINKERTON-FLORANCE J L,et al. Overview of the DARPA/AFRL/NASA smart wing phase Ⅱ program[C]//Proceedings of SPIE 4332,Smart Structures and Materials 2001:Industrial and Commercial Applications of Smart Structures Technologies. 2001,4332:383-390. [79] STANFORD B,ABDULRAHIM M,LIND R,et al. Investigation of membrane actuation for roll control of a micro air vehicle[J]. Journal of Aircraft,2007,44(3):741-749. [80] VOS R,GURDAL Z,ABDALLA M. Mechanism for warp-controlled twist of a morphing wing[J]. Journal of Aircraft,2010,47(2):450-457. [81] RAITHER W,HEYMANNS M,BERGAMINI A,et al. Morphing wing structure with controllable twist based on adaptive bending-twist coupling[J]. Smart Materials and Structures,2013,22(6):065017. [82] JARDINE A P,BARTLEY-CHO J D,FLANAGAN J S. Improved design and performance of the SMA torque tube for the DARPA Smart Wing Program[C]//Proceedings of SPIE 3674,Smart Structures and Materials 1999:Industrial and Commercial Applications of Smart Structures Technologies,1999,3674:260-270. [83] PRAHLAD H,CHOPRA I. Design of a variable twist tilt-rotor blade using shape memory alloy (SMA) actuators[C]//Proceedings of SPIE 4327,Smart Structures and Materials 2001:Smart Structures and Integrated Systems,2001,4327:46-60. [84] ASO A,TANAKA H. Study on a morphing wing structure using open-section member[C]//Asia-Pacific International Symposium on Aerospace Technology (APISAT 2015),Cairns,2015:352. [85] ASO A,PERREY M,TANAKA H. Experimental study on wing twist-morphing structure using a double-tube cylinder[J]. Transactions of the Japan society For Aeronautical and Space Sciences,Aerospace Technology Japan,2017,15(2016):a1-a6. [86] CRAMER N B,CHEUNG K,SWEI S S M. Design and testing of a lattice-based cellular component active twist wing[C]//24th AIAA/AHS Adaptive Structures Conference,San Diego,2016:1085. [87] CHEUNG K,CELLUCCI D,COPPLESTONE G,et al. Development of mission adaptive digital composite aerostructure technologies (MADCAT)[C]//17th AIAA Aviation Technology,Integration,and Operations Conference,Denver,2017:4273. [88] JENETT B,CALISCH S,CELLUCCI D,et al. Digital morphing wing:Active wing shaping concept using composite lattice-based cellular structures[J]. Soft Robotics,2017,4(1):33-48. [89] RODRIGUE H,CHO S,HAN M W,et al. Effect of twist morphing wing segment on aerodynamic performance of UAV[J]. Journal of Mechanical Science and Technology,2016,30(1):229-236. [90] KIKUTA M T. Mechanical properties of candidate materials for morphing wings[D]. Virginia:Virginia Polytechnic Institute and State University,2003. [91] THILL C L,ETCHES J,BOND I,et al. Morphing skins[J]. The Aeronautical Journal,2008,112(1129):117-139. [92] 王晓明,周文雅,吴志刚. 压电纤维复合材料驱动的机翼动态形状控制[J]. 航空学报,2017,38(1):159-167. WANG Xiaoming,ZHOU Wenya,WU Zhigang. Dynamic shape control of wing using piezoelectric fiber composite materials[J]. Acta Aeronautica et Astronautica Sinica,2017,38(1):159-167. [93] VASISTA S,TONG L,WONG K C. Realization of morphing wings:A multidisciplinary challenge[J]. Journal of Aircraft,2012,49(1):11-28. [94] LI M,CHEN W M,GUAN D. Improvement of aircraft rolling power by use of piezoelectric actuators[J]. Chinese Journal of Aeronautics,2004,17(2):87-92. [95] WANG X,ZHOU W,WU Z. Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings[J]. Journal of Sound and Vibration,2018,416:17-28. [96] WANG X,ZHOU W,XUN G,et al. Dynamic shape control of piezocomposite-actuated morphing wings with vibration suppression[J]. Journal of Intelligent Material Systems and Structures,2018,29(3):358-370. [97] 李文成. 变体飞行器动力学建模与稳定性分析及控制[D]. 南京:南京航空航天大学,2018. LI Wencheng. Dynamics modeling,stability analysis and con-trol of morphing aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018. [98] 殷明,陆宇平,何真. 变体飞行器LPV建模与鲁棒增益调度控制[J]. 南京航空航天大学学报,2013,45(2):202-207. YIN Ming,LU Yuping,HE Zhen. LPV modeling and robust gain scheduling control of morphing aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics,2013,45(2):202-207. [99] 杨贯通. 变外形飞行器建模与控制方法研究[D]. 北京:北京理工大学,2015. YANG Guantong. Research on modeling and control of morphing flight vehicles[D]. Beijing:Beijing Institute of Technology,2015. [100] 邵朋院,吴成富,马松辉,等. 基于LPV鲁棒输出反馈控制的变形无人机暂态控制律设计[J]. 西北工业大学学报,2012,30(5):746-749. SHAO Pengyuan,WU Chengfu,MA Songhui,et al. An effective design of transient mode controller for morphing UAV based on LPV robust output feedback control[J]. Journal of Northwestern Polytechnical University,2012,30(5):746-749. [101] 陆宇平,何真. 变体飞行器控制系统综述[J]. 航空学报,2009,30(10):1912-1917. LU Yuping,HE Zhen. A survey of morphing aircraft control systems[J]. Acta Aeronautica et Astronautica Sinica,2009,30(10):1912-1917. [102] 祝连庆,孙广开,李红,等. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报,2018,54(14):28-42. ZHU Lianqing,SUN Guangkai,LI Hong,et al. Intelligent and flexible morphing wing technology:A review[J]. Journal of Mechanical Engineering,2018,54(14):28-42. |
[1] | 彭翔, 陈轲楠, 王明博, 易兵, 李吉泉, 姜少飞. 基于改进堆叠顺序表法的变厚度复合结构铺层序列优化设计[J]. 机械工程学报, 2024, 60(19): 199-211. |
[2] | 肖洪, 杨广, 郭宏伟, 刘荣强, 陶建国, 邓宗全. 飞行器变形翼研究现状与展望[J]. 机械工程学报, 2023, 59(19): 1-23. |
[3] | 祝连庆, 孙广开, 李红, 董明利. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报, 2018, 54(14): 28-42. |
[4] | 赵雷雷, 周长城, 于曰伟. 特种车辆悬架减振器变厚度阀片变形计算及应用研究*[J]. 机械工程学报, 2017, 53(6): 116-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||