机械工程学报 ›› 2018, Vol. 54 ›› Issue (14): 28-42.doi: 10.3901/JME.2018.14.028
祝连庆1,2, 孙广开1,2, 李红1,2, 董明利1,2
收稿日期:
2017-09-14
修回日期:
2018-03-26
出版日期:
2018-07-20
发布日期:
2018-07-20
通讯作者:
祝连庆(通信作者),男,1963年出生,博士,教授,博士研究生导师。主要研究方向为光纤传感和光电精密测试技术等。E-mail:zhulianqing@sina.com
作者简介:
孙广开,男,1984年出生,博士,副教授。主要研究方向为智能传感、检测与机器人技术。E-mail:guangkai.sun@buaa.edu.cn;李红,女,1985年出生,博士,讲师。主要研究方向为先进传感与检测技术。E-mail:honglee123@126.com;董明利,女,1965年出生,博士,教授,博士研究生导师。主要研究方向为视觉测量技术、精密测量技术与仪器。E-mail:dongml@sina.com
基金资助:
ZHU Lianqing1,2, SUN Guangkai1,2, LI Hong1,2, DONG Mingli1,2
Received:
2017-09-14
Revised:
2018-03-26
Online:
2018-07-20
Published:
2018-07-20
摘要: 军事侦察打击、远程运输和医疗救援对飞机的性能要求不断提高,传统机翼在提升飞行效率和任务适应性等方面存在瓶颈,制约着飞机性能提升。智能柔性变形机翼将柔性材料、变形结构和分布控制与传感等技术结合起来,实时感知载荷和姿态并自适应变形,在不同环境和任务下都获得优异性能,对克服传统机翼不足、提升飞机性能具有重要作用。目前,国内外学者已开展相关研究,虽然取得一定进展,但是存在若干问题限制了技术的应用发展,亟待探讨解决方法。介绍智能柔性变形机翼的研究现状,分析关键问题,指出在柔性蒙皮、变形机构、分布控制、智能感知和系统集成与协同等方面的研究重点和方法,并对未来发展提出建议。
中图分类号:
祝连庆, 孙广开, 李红, 董明利. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报, 2018, 54(14): 28-42.
ZHU Lianqing, SUN Guangkai, LI Hong, DONG Mingli. Intelligent and Flexible Morphing Wing Technology: A Review[J]. Journal of Mechanical Engineering, 2018, 54(14): 28-42.
[1] JENETT B,CALISCH S,CELLUCCI D,et al. Digital morphing wing:Active wing shaping concept using composite lattice-based cellular structures[J]. Soft Robotics,2017,4(1):33-48. [2] KOREANSCHI A,GABOR O S,ACOTTO J,et al. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speed,Part I-Aerodynamic optimization using genetic,bee colony and gradient descent algorithms[J]. Chinese Journal of Aeronautics,2017,30(1):149-163. [3] KOREANSCHI A,GABOR O S,ACOTTO J,et al. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds,Part Ⅱ-Experimental validation using Infra-Red transition measurement from Wind Tunnel tests[J]. Chinese Journal of Aeronautics,2017,30(1):164-174. [4] LUCA M D,MINTCHEV S,HEITZ G,et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones[J]. Interface Focus,2017,7:20160092. [5] MEGUID S A,SU Y,WANG Y. Complete morphing wing design using flexible-rib system[J]. Int. J. Mech. Mater. Des.,2017,13:159-171. [6] BARBARINO S,BILGEN O,AJAJ R M,et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures,2011,22:823-877. [7] GAO L,LI C,JIN H,et al. Aerodynamic characteristics of a novel catapult launched morphing tandem-wing unmanned aerial vehicle[J]. Advances in Mechanical Engineering,2017,9(2):1-15. [8] THILL C,ETCHES J,BOND I,et al. Morphing skins[J]. The Aeronautical Journal,2008,112(1129):117-139. [9] SOFLA A Y N,MEGUID S A,TAN K T,et al. Shape morphing of aircraft wing:Status and challenges[J]. Materials and Design,2010,31:1284-1292. [10] KAMMEGNE M J T,BOTEZ R M,GRIGORIE L T,et al. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing[J]. Chinese Journal of Aeronautics,2017,30(2):561-576. [11] PREVITALI F,MOLINARI G,ARRIETA A F,et al. Design and experimental characterization of a morphing wing with enhanced corrugated skin[J]. Intelligent Material Systems and Structures,2016,27(2):278-292. [12] BUDARAPU P R,SUDHIR Y B,NATARAJAN R. Design concepts of an aircraft wing:Composite and morphing airfoil with auxetic structures[J]. Front Struct. Civ. Eng.,2016,10(4):394-408. [13] KOREANSCHI A,SUGAR-GABOR O,BOTEZ R M. Drag optimization of a wing equipped with a morphing upper surface[J]. The Aeronautical Journal,2016,120(1225):473-493. [14] HIERONYMUS T L. Flight feather attachment in rock pigeons (Columba livia):Covert feathers and smooth muscle coordinate a morphing wing[J]. Journal of Anatomy,2016,229:631-656. [15] TAKAHASHI H,YOKOZEKI T,HIRANO Y. Development of variable camber wing with morphing leading and trailing sections using corrugated structures[J]. Intelligent Material Systems and Structures,2016,27(20):2827-2836. [16] SUN J,GUAN Q,LIU Y,et al. Morphing aircraft based on smart materials and structures:A state-of-the-art review[J]. Intelligent Material Systems and Structures,2016,27(17):2289-2312. [17] SU W,SWEI S S M,ZHU G G. Optimum wing shape of highly flexible morphing aircraft for improved flight performance[J]. Journal of Aircraft,2016,53(5):2289-2312. [18] AJAJ R M,FRISWELL M I,BOURCHAK M,et al. Span morphing using the GNATSpar wing[J]. Aerospace Science and Technology,2016,53:38-46. [19] ISMAIL N,ZULKIFLI A,TALIB R J,et al. Vortex structure on twist-morphing micro air vehicle wings[J]. Micro Air Vehicles,2016,8(3):194-205. [20] SHI R,SONG J,WAN W. Active disturbance rejection control system for a morphing wing structure[J]. Asian Journal of Control,2015,17(3):832-841. [21] GUAN Z,YU Y. Aerodynamics and mechanisms of elementary morphing models for flapping wing in forward flight of bat[J]. Appl. Math. Mech. Engl. Ed.,2015,36(5):669-680. [22] VIGLIOTTI A,PASINI D. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings[J]. Smart Mater Struct.,2015,24:037006. [23] DAYNES S,LACHENAL X,WEAVER P M. Concept for morphing airfoil with zero torsional stiffness[J]. Thin-Walled Structures,2015,94:129-134. [24] ZHANG P,ZHOU L,CHENG W J,et al. Conceptual design and experimental demonstration of a distributedly actuated morphing wing[J]. Journal of Aircraft,2015,52(2):452-461. [25] ALMEIDA T C,SANTOS O,OTUBO J. Construction of a morphing wing rib actuated by a NiTi wire[J]. J Aerosp Technol Manag,2015,52(2):452-461. [26] WU R,SUN J,CHANG Z,et al. Elastic composite skin for a pure shear morphing wing structures[J]. Journal of Intelligent Material Systems and Structures,2015,26(3):352-363. [27] MURUGAN S,WOODS B K S,FRISWELL M I. Hierarchical modeling and optimization of camber morphing airfoil[J]. Aerospace Science and Technology,2015,42:31-38. [28] GASPARI A D,RICCI S. Knowledge-based shape optimization of morphing wing for more efficient aircraft[J]. International Journal of Aerospace Engineering,2015,325724:1-19. [29] RIM M,KIM E H,KANG W R. Development of a shape memory alloy wire actuator to operate a morphing wing[J]. Journal of Theoretical and Applied Mechanics,2014,52(2):519-531. [30] BASAERI H,KOMA A Y,ZAKERZADEH M R,et al. Experimental study of a bio-inspired robotic morphing wing mechanism actuated by shape memory alloy wires[J]. Mechatronics,2014,24:1231-1241. [31] PECORA R. Multi-parametric flutter analysis of a morphing wing trailing edge[J]. The Aeronautical Journal,2014,118(1207):1063-1078. [32] DETRICK M,WASHINGTON G. Modeling and design of a morphing wing for micro unmanned aerial vehicles via active twist[C]//Proceeding of 48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,Palm Springs,Hawaii,2007:1788. [33] BARTLEY J D,WANG D P,MARTIN C A. Development of high-rate,adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J]. Journal of Intelligent Material Systems and Structures,2004,15:279-291. [34] MANZO J,GARCIA E,WICKENHEISER A,et al. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism[J]. Proc. of SPIE,2005,5764:232-240. [35] NEAL D A,GOOD M G,JOHNSTON C O,et al. Design and wind-tunnel analysis of a fully adaptive aircraft configuration[C]//Proceeding of 45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,Palm Springs,California,2004:1727. [36] BLONDEAU J,RICHESON J,PINES D J. Design,development and testing of a morphing aspect ratio wing using an inflatable telescopic spar[C]//Proceeding of 44th AIAA/ASME/ASCE/AHS Structures,Structural Dynamics,and Materials Conference,Norfolk,Virginia,2003:1718. [37] JOO J J,SANDERS B,JOHNSON T,et al. Optimal actuator location within a morphing wing scissor mechanism configuration[C]//Smart Structures and Materials:Modeling,Signal Processing,and Control. Proc SPIE,2006,6166:616603-1. [38] BHARTI S,FRECKER M I,LESIEUTRE G,et al. Tendon actuated cellular mechanisms for morphing aircraft wing[C]//Modeling,Signal Processing,and Control for Smart Structures. Proc SPIE,2007,6523:652307-1. [39] ALEIXO P M M. Morphing aircraft structures design and testing an experimental UAV[D]. Portugal:Instituto Superior Tecnico,2007. [40] REED JR JL,HEMMELGARN C D,PELLEY B M,HAVENS E. Adaptive wing structures[C]//Smart Structures and Materials 2005:Industrial and Commercial Applications of Smart Structures Technologies. Proc SPIE,2005,5762:132-42. [41] 冷劲松. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报,2014,35(1):29-45. LENG Jinsong. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):29-45. [42] YU Y,LI X,ZHANG W,et al. Investigation on adaptive wing structure based on shape memory polymer composite hinge[C]//International Conference on Smart Materials and Nanotechnology in Engineering,China. Proc SPIE,2007,6423:64231D-5. [43] MATTIONI F,WEAVER P M,POTTER K D,et al. The application of thermally induced multistable composites to morphing aircraft structures[C]//Industrial and Commercial Applications of Smart Structures Technologies. Proc SPIE,2008,6930:693012. [44] 陈钱,白鹏,尹维龙,等. 飞机外翼段大尺度剪切式变后掠设计与分析[J]. 空气动力学学报,2012,31(1):40-46. CHEN Qian,BAI Peng,YIN Weilong,et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J]. Acta Aerodynamica Sinica,2012,31(1):40-46. [45] 程春晓,李道春,向锦武,等. 柔性后缘可变形机翼气动特性分析[J]. 北京航空航天大学学报,2016,42(2):360-367. CHENG Chunxiao,LI Daochun,XIANG Jinwu,et al. Analysis on aerodynamic characteristics of morphing wing with flexible trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(2):360-367. [46] CAMPANILE L F,SACHAU D. The belt-rib concept:A structronic approach to variable camber[J]. J Intel Mater Syst Struct,2000,11:215-24. [47] KOTA S,LU K J,KREINER Z,et al. Design and application of compliant mechanisms for surgical tools[J]. Journal of Biomechanical Engineering,2005,127:981-989. [48] DIACONU C G,WEAVER P M,MATTIONI F. Concepts for morphing airfoil sections using bi-stable laminated composite structures[J]. Thin-Walled Struct,2008,46:689-701. [49] SOFLA A Y N,ELZEY D M,WADLEY H N G. An antagonistic flexural unit cell for design of shape morphing structures[C]//Proceedings of the ASME Aerospace Division:Adaptive Materials and Systems,Aerospace Materials and Structures,Anaheim,CA,2004,p261-9. [50] SOFLA A Y N,ELZEY D M,WADLEY H N G. Two-way antagonistic shape actuation based on the one-way shape memory effect[J]. J. Intel. Mater. Syst. Struct.,2008,19:1017-1027. [51] SOFLA A Y N,ELZEY D M,WADLEY H N G. Cyclic degradation of antagonistic shape memory actuated structures[J]. Smart Mater Struct,2008,17:025014. [52] WIGGINS L D,STUBBS M D,JOHNSTON C O,et al. A design and analysis of a morphing hyper-elliptic cambered span (HECS) wing[C]//Proceeding of 45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference,Palm Springs,California,2004. [53] MANZO J E. Analysis and design of a hyper-elliptical cambered span morphing aircraft[D]. Ithaca:Cornell University,2006. [54] MAJJI M. Robust control of redundantly actuated dynamical systems[D]. Texas:Texas A&M University,2006. [55] STANFORD B,ABDULRAHIM M,LIND R,et al. Investigation of membrane actuation for roll control of a micro air vehicle[J]. J Aircraft,2007,44:741-749. [56] BARRETT R. Active aeroelastic tailoring of an adaptive Flexspar stabilator[J]. Smart Mater. Struct.,1996,5:723-730. [57] AUSTIN F,ROSSI M J,NOSTRAND W V,et al. Static shape control for adaptive wings[J]. AIAA J,1994,32:1895-1901. [58] JOO J J,SANDERS B. Optimal location of distributed actuators within an in-plane multi-cell morphing mechanism[J]. J. Intel. Mater. Syst. Struct.,2009,20:481-492. [59] STRELEC J K,LAGOUDAS D C,KHAN M A,et al. Design and implementation of a shape memory alloy actuated reconfigurable airfoil[J]. J. Intel. Mater. Syst. Struct.,2003,14:257-273. [60] DONG Y,BOMING Z,JUN L. A changeable aerofoil actuated by shape memory alloy springs[J]. Mater. Sci. Eng. A,2008,485:243-50. [61] PINKERTON J L. A feasibility study to control airfoil shape using THUNDER[J]. NASA Technical Memorandum,4767,1997. [62] KIKUTA M T. Mechanical properties of candidate materials for morphing wings[D]. Virginia:Virginia Polytechnic Institute and State University,2003. [63] 孙健. 基于SMPC蒙皮和主动蜂窝结构的可变形机翼结构研究[D]. 哈尔滨:哈尔滨工业大学,2015. SUN Jian. Investigation on morphing wing structures based on shape memory polymer composite (SMPC) skins and active honeycomb structures[D]. Harbin:Harbin Institute of Technology. [64] MCKNIGHT G,DOTY R,KEEFE A,et al. Segmented reinforcement variable stiffness materials for reconfigurable surfaces[J]. Journal of Intelligent Material Systems and Structures,2010,21:1783-1793. [65] RAMRAKHYANI D S,LESIEUTRE G A,FRECKER M,et al. Aircraft structural morphing using tendon-actuated compliant cellular trusses[J]. J. Aircr.,2005,42(6):1615-1621. [66] 戚健龙,徐志伟,朱倩,等. 变体机翼大变形梯形蒙皮结构研究[J]. 功能材料,2011,42(1):108-111. QI Jianlong,XU Zhiwei,ZHU Qian,et al. Research on large-deformation trapezoidal skin structure of morphing wings[J]. Journal of functional materials,2011,42(1):108-111. [67] HAWKINS G,O'BRIEN M,ZALDIVAR R. Machine-Augmented Composites[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,2002,1240. [68] HERMANIS A,CACURS R,GREITANS M,et al. Acceleration and magnetic sensor network for shape sensing[J]. IEEE Sensors Journal,2016,16(5):1271-1280. [69] GUO J,LIU X,JIANG N,et al. Highly stretchable,strain sensing hydrogel optical fibers[J]. Advanced Materials,2016,28:10244-10249. [70] XU L,GE J,PATEL J H,et al. 3-Dimensional soft shape sensor based on dual-layer orthogonal fiber bragg grating mesh[C]//OFC,2017,Th3H.2. [71] XU T,WANG W,BIAN X,et al. High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape[J]. Science Report,2015,5:12997. [72] SIM H J,CHOI C,KIM S H,et al. Stretchable triboelectric fiber for self-powered kinematic sensing textile[J]. Science Reports,2016,6:35153. [73] LARSON C,PEELE B,LI S,et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science,2016,351(6277):1071-1074. [74] PU X,LIU M,CHEN X,et al. Ultrastretchable,transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing[J]. Science advances,2017,3:1700015. [75] 沈元,昂海松,刘卫东. 用于变形机翼夹心式柔性伸缩蒙皮的梯形蜂窝支撑结构[J]. 复合材料学报,2015,32(3):815-822. SHEN Yuan,ANG Haisong,LIU Weidong. Trapezoidal cellular support structure applied to flexible telescopic sandwich skin of morphing wing[J]. Acta Materiae Compositae Sinica,2015,32(3):815-822. [76] 赵金涛. 用于机翼后缘变形的智能蒙皮及变形测量方法研究[D]. 南京:南京航空航天大学,2010. ZHAO Jintao. Research on smart wing skin for trailing edges morph and its deformation measurement method[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010. [77] 于靖军,郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报,2015,51(13):53-68. YU Jingjun,HAO Guangbo,CHEN Guimin,et al. State-of-art compliant mechanisms and their application[J]. Journal of Mechanical Engineering,2015,51(13):53-68. [78] 郭闯强,吴春亚,刘宏. 离子聚合物金属复合材料驱动器在机器人中的应用进展[J]. 机械工程学报,2017,53(9):1-13. GUO Chuangqiang,WU Chunya,LIU Hong. Application progress of ionic polymer-metal composites actuator in robots[J]. Journal of Mechanical Engineering,2017,53(9):1-13. [79] 高仁璟,张莹,赵剑,等. 面向结构形状控制的压电纤维复合薄膜驱动器布局方式与控制参数协同优化设计[J]. 机械工程学报,2016,52(18):177-183. GAO Renjing,ZHANG Ying,ZHAO Jian,et al. Integrated design optimization of MFC-layout form and control parameters for morphing structural shapes[J]. Journal of Mechanical Engineering,2016,52(18):177-183. |
[1] | 赵新玉, 齐天之, 王中亚, 陈安生. 超声检测三角矩阵聚焦成像算法[J]. 机械工程学报, 2019, 55(4): 19-24. |
[2] | 朱新杰, 邓明晰, 都东, 韩赞东. 接收孔径对超声导波合成孔径阵列成像检测的影响分析[J]. 机械工程学报, 2018, 54(12): 133-140. |
[3] | 周正干, 孙广开. 先进超声检测技术的研究应用进展[J]. 机械工程学报, 2017, 53(22): 1-10. |
[4] | 周进节, 郑阳, 张宗健, 谭继东. 电磁超声导波大功率激励信号的线性放大方法[J]. 机械工程学报, 2017, 53(18): 26-34. |
[5] | 胡宏伟, 杜剑, 李洋, 周正干. 基于稀疏矩阵的两层介质超声相控阵全聚焦成像[J]. 机械工程学报, 2017, 53(14): 128-135. |
[6] | 何存富, 刘岳鹏, 刘增华, 吴斌. 空气耦合Lamb波在单晶硅中的传播特性和缺陷检测研究[J]. 机械工程学报, 2015, 51(12): 1-7. |
[7] | 周正干, 彭地, 李洋, 胡宏伟. 相控阵超声检测技术中的全聚焦成像算法及其校准研究[J]. 机械工程学报, 2015, 51(10): 1-7. |
[8] | 马宏伟;董明;陈渊;张旭辉. 基于矩形换能器空间脉冲响应的相控阵声场研究[J]. , 2014, 50(18): 36-42. |
[9] | 朱新杰;韩赞东;都东;陈以方;原可义. 边界散射对超声水平剪切导波成像检测的影响[J]. , 2011, 47(16): 14-19. |
[10] | 周进节;郑阳;张吉堂. 基于压电晶片阵列的管中导波时反检测方法研究[J]. , 2013, 49(22): 59-65. |
[11] | 何存富;郑阳;周进节;吴斌. 基于激光测振仪的兰姆波离面和面内位移检测[J]. , 2012, 48(8): 6-11. |
[12] | 周正干;孙广开;李征;陈秀成. 复合材料层压板钻孔分层激光超声检测方法[J]. , 2013, 49(22): 29-33. |
[13] | 王兴国;常俊杰;单英春;徐久军;姚曼;王旭东. 超声回波信号检测橡胶薄层的特性[J]. , 2008, 44(10): 114-117. |
[14] | 焦敬品;杨敬;何存富;吴斌. 基于虚拟聚焦的板结构兰姆波换能器阵列检测方法研究[J]. , 2011, 47(8): 12-20. |
[15] | 周进节;郑阳;张吉堂. 基于单探头的杆中缺陷超声导波时反检测方法[J]. , 2013, 49(8): 19-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||