机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 1-23.doi: 10.3901/JME.2023.19.001
肖洪, 杨广, 郭宏伟, 刘荣强, 陶建国, 邓宗全
收稿日期:
2023-06-22
修回日期:
2023-08-15
出版日期:
2023-10-05
发布日期:
2023-12-11
通讯作者:
郭宏伟(通信作者),男,1980年出生,教授,博士研究生导师。主要研究方向为空天折展与变形机构。E-mail:guohw@hit.edu.cn
作者简介:
肖洪,男,1988年出生,博士,助理研究员,硕士研究生导师。主要研究方向为飞行器变形翼结构与机构。E-mail:xiaohong@hit.edu.cn
基金资助:
XIAO Hong, YANG Guang, GUO Hongwei, LIU Rongqiang TAO Jianguo, DENG Zongquan
Received:
2023-06-22
Revised:
2023-08-15
Online:
2023-10-05
Published:
2023-12-11
摘要: 传统固定构型机翼因其气动外形难以满足飞行器日益增长的性能要求,因此飞行器变形翼研究得到广泛的关注,已成为当前国际航空航天领域的研究热点,是飞行器实现大空域、宽速域的关键技术,其发展趋势是多维度、大变形、高刚度、轻量化等。近年来,科研人员设计出多种形式的变形翼,如变弦长、变后掠、变展长、展向变弯曲、弦向变弯曲、翼型变厚度等。根据翼面内变形和翼面外变形对变形翼进行分类,详细阐述变形翼的研究现状。分析飞行器变形翼研究发展趋势,包括多维度变形机构与大承载连续光滑变形蒙皮结构设计、高效能驱动器及分布式驱动技术、变形翼机构-蒙皮-驱动一体化设计与优化、融合环境的变形翼设计与验证等关键技术,为飞行器变形翼研究提供借鉴与参考。
中图分类号:
肖洪, 杨广, 郭宏伟, 刘荣强, 陶建国, 邓宗全. 飞行器变形翼研究现状与展望[J]. 机械工程学报, 2023, 59(19): 1-23.
XIAO Hong, YANG Guang, GUO Hongwei, LIU Rongqiang TAO Jianguo, DENG Zongquan. Application Status and Future Prospect of Aircraft Morphing Wing[J]. Journal of Mechanical Engineering, 2023, 59(19): 1-23.
[1] BARBARINO S,BILGEN O,AJAJ R M,et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems & Structures,2011,22(9):823-877. [2] LI Daochun,ZHAO Shiwei,RONCH A D,et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences,2018,100:46-62. [3] CHU Lingling,LI Qi,GU Feng,et al. Design,modeling,and control of morphing aircraft:A review[J]. Chinese Journal of Aeronautics,2022,35(5):220-246. [4] MAX B. Adjustable wing aircraft:USA,2822995[P]. 1958-02-11. [5] FREDERICK T C. Aeroplanes having wings capable of adjustment in sweep:US,3206146[P]. 1963-09-14. [6] WOLDEMAR V. Swept wing with unswept spar:USA,3018985[P]. 1956-12-31. [7] HONG C H,CHEPLAK M,CHOI J Y,et al. Flexible multi-body design of a morphing UCAV[C]//AIAA 3rd Unmanned Unlimited Technical Conference,Workshop and Exhibit. Chicago,Illinois:AIAA,2004:6595. [8] 程勇,董二宝,许旻,等. 可变后掠翼机构设计与仿真[J]. 机械与电子,2010,208(2):20-22. CHENG Yong,DONG Erbao,XU Min,et al. Structural design and kinematics simulation for the variable swept wing[J]. Machinery & Electronics,2010,208(2):20-22. [9] BENOȊT B,BREITSAMTER C,ADAMS N. Aerodynamic investigations of a morphing membrane wing[J]. AIAA Journal,2012,50(11):2588-2599. [10] GREATWOOD C,WALDOCK A,RICHARDSON T. Perched landing manoeuvres with a variable sweep wing UAV[J]. Aerospace Science and Technology,2017,71:510-520. [11] MANCHESTER Z R,LIPTON J I,WOOD R J,et al. A variable forward-sweep wing design for enhanced perching in micro aerial vehicles[C]//55th AIAA Aerospace Sciences Meeting. Grapevine,Texas:AIAA,2017:9-13. [12] SIDDALL R,ANCEL A O,KOVAČ M. Wind and water tunnel testing of a morphing aquatic micro air vehicle[J]. Interface Focus,2017,7(1):1-15. [13] 田应仲,姜汉斌. 可变后掠机翼变形机理及气动特性研究[J]. 计量与测试技术,2022,49(1):31-34. TIAN Yingzhong,JIANG Hanbin. Research on deformation mechanism and aerodynamic characteristics of variable swept wing[J]. Metrology & Measurement Technique,2022,49(1):31-34. [14] ARENA A. Segmented variable sweep wing aircraft:USA,5312070[P]. 1992-04-02. [15] ROJRATSIRIKUL P. Bio-inspiration in the wings of man-made flyers[J]. Journal of Research and Applications in Mechanical Engineering,2013,1(3):1-7. [16] DANIEL T G,MUJAHID A,RICK L. Flight dynamics of a morphing aircraft utilizing independent multiple-joint wing sweep[J]. International Journal of Micro Air Vehicles,2010,2(2):91-106. [17] DI L M,MINTCHEY S,HEITZ G,et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones[J]. Interface Focus,2016,7(1):1-11. [18] FLANAGAN J S,STRUTZENBERG R C,MYERS R B,et al. Development and flight testing of a morphing aircraft,the NextGen MFX-1[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference. Honolulu,Hawaii:AIAA/ASME/ASCE/AHS/ASC,2007:1-3. [19] BOWMAN J,SANDERS B,CANNON B,et al. Development of next-generation morphing aircraft structures[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference. Honolulu,Hawaii:AIAA/ASME/ASCE/AHS/ASC,2007:1-10. [20] REICH G W,SANDERS B,JOO James. Development of skins for morphing aircraft applications via topology optimization[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference. Honolulu,Hawaii:AIAA/ASME/ASCE/AHS/ASC,2007:1-13. [21] BARROWS D A. Videogrammetric model deformation measurement technique for wind tunnel applications[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference. Reno,Nevada:AIAA/ASME/ASCE/AHS/ASC,2007:1-12. [22] GANDHI N,JHA A,MONACO J,et al. Intelligent control of a morphing aircraft[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference. Honolulu,Hawaii:AIAA/ASME/ASCE/AHS/ASC,2007:1-17. [23] ANDERSEN G R,COWAN D L,PIATAK D J. Aeroelastic modeling,analysis,and testing of a morphing wing structure[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference. Honolulu,Hawaii:AIAA/ASME/ASCE/AHS/ASC,2007:1-15. [24] BAI Songnan,DING Runze,CHIRARATTANANON P. A micro aircraft with passive variable-sweep wings[J]. IEEE Robotics and Automation Letters,2022,7(2):4016-4023. [25] KEIHL M M,BORTOLIN R S,SANDERS B,et al. Mechanical properties of shape memory polymers for morphing aircraft applications[J]. Smart Structures and Materials,2005,5762:143-151. [26] BASAERI H,ZAKERZADEH M,YOUSEFIKOMA A,et al. Hysteresis modeling,identification and fuzzy PID control of SMA wire actuators using generalized Prandtl-Ishlinskii model with experimental validation[J]. Journal of Computational Applied Mechanics,2019,50(2):263-274 [27] LU Chengyang,ZHANG Xiaotian,LI Ruizhi,et al. Proof-of-concept study of flexible lattice variable sweptback wing[J]. AIAA JOURNAL,2023,61(3):1129-1147. [28] FRADENBURGH E A,MURRILL R J,KIELY E F. Dynamic model wind tunnel tests of a variable-diameter,telescoping-blade rotor system(TRAC Rotor)[M]. California:United Technologies Corp Stratford CT Sikorsky Aircraft Div,1973. [29] WANG J M,JONES C T,NIXON M W. A variable diameter short haul civil tiltrotor[C]//55th Annual Forum of the American Helicopter Society,1999. [30] 张祖豪. 具有连续机翼表面的伸缩式变形翼研究[D]. 哈尔滨:哈尔滨工业大学,2019. ZHANG Zuhao. Study on telescopic morphing wing with continue skin[D]. Harbin:Harbin Institute of Technology,2019. [31] 王礼佳. 无人机变形翼的方案设计与仿真分析[D]. 哈尔滨:哈尔滨工业大学,2014. WANG Lijia. Scheme design and simulation analysis of unmanned aerial vehicle deformable wing[D]. Harbin:Harbin Institute of Technology,2014. [32] SNEED R,SMITH R,CASH M,et al. Smart-material based hydraulic pump system for actuation of a morphing wing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference. Honolulu,Hawaii:AIAA/ASME/ASCE/AHS/ASC 2007:1702. [33] 李智,董二宝,许旻,等. 伸缩翼变形机构设计与实验研究[J]. 机械与电子,2013,250(7):65-68. LI Zhi,DONG Erbao,XU Min,et al. Design and experimental study for the telescopic wing[J]. Machinery & Electronics,2013,250(7):65-68. [34] MESTRINHO J R C,FELÍCIO J M I,SANTOS P D,et al. Design optimization of a variable-span morphing wing[C]//2nd International Conference on Engineering Optimization. Lisbon,Portugal:DCA,2010:6-9. [35] FELÍCIO J,SANTOS P,GAMBOA P,et al. Evaluation of a variable-span morphing wing for a small UAV[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t. Denver,Colorado:AIAA/ASME/ASCE/AHS/ASC,2012:2011-2074. [36] AJAJ R M,FRISWELL M I,BOURCHAK M,et al. Span morphing using the GNATSpar wing[J]. Aerospace Science and Technology,2016,53:38-46. [37] ALULEMA V H,VALENCIA E A,TOAPANTA E,et al. Performance assessment of a variable span morphing wing small UAV for high altitude surveillance missions[C]//AIAA Propulsion and Energy 2020 Forum. Hawaii:AIAA,2020:3962 [38] WANG Qing,CHEN Yan,TANG Hui. Mechanism design for aircraft morphing wing[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. Honolulu,Hawaii:AIAA/ASME/ASCE/AHS/ASC,2012:1608. [39] LESIEUTRE G A,BROWNE J A,FRECKER M I. Design of a flexible skin for a shear morphing wing[J]. Journal of Intelligent Material Systems and Structures,2011,22:979-986. [40] BISHAY P L,BURG E,AKINWUNMI A,et al. Development of a new span-morphing wing core design[J]. Designs,2019,3(1):12. [41] WOODS B K S,FRISWELL M I. The adaptive aspect ratio morphing wing:Design concept and low fidelity skin optimization[J]. Aerospace Science & Technology,2015,42(4-5):209-217. [42] SAMUEL J B,PINES D. Design and testing of a pneumatic telescopic wing for unmanned aerial vehicles[J]. Journal of Aircraft,2007,44(4):1088-1099. [43] HENRY J,BLONDEAU J,PINES D. Stability analysis for UAVs with a variable aspect ratio wing[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference. Austin,Texas:AIAA/ASME/ASCE/AHS/ASC,2005:2044. [44] BLONDEAU J,PINES D. Wind tunnel testing of a morphing aspect ratio wing using an pneumatic telescoping spar[C]//2nd AIAA "Unmanned Unlimited" Conf. and Workshop & Exhibit. San Diego,California:AIAA,2003:6659. [45] KHEONG L,JACOB J. In flight aspect ratio morphing using inflatable wings[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno,Nevada:AIAA,2008:425. [46] SIMPSON A,JACOB J,SMITH S. Flight control of a UAV with inflatable wings with wing warping[C]//24th AIAA Applied Aerodynamics Conference. San Francisco,California:AIAA,2006:2831. [47] CADOGAN D,GRAHAM W,SMITH T. Inflatable and rigidizable wings for unmanned aerial vehicles[C]//2nd AIAA "Unmanned Unlimited" Conf. and Workshop & Exhibit. San Diego,California:AIAA,2003:6630. [48] ROWE J,SMITH S,SIMPSON A,et al. Development of a finite element model of warping inflatable wings[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th. Newport,Rhode Island:AIAA/ASME/ASCE/AHS/ASC,2006:1697. [49] 李强. 形状记忆合金作动的伸缩机翼设计研究[D]. 大连:大连理工大学,2022. LI Qiang. Scheme research on the design of telescopic wing driven by Shape memory alloy[D]. Dalian:Dalian University of Technology,2022. [50] ZHOU H,PLUMMER A R,CLEAVER D. Distributed actuation and control of a tensegrity-based morphing wing[J]. IEEE/ASME Transactions on Mechatronics,2021,27(1):34-45. [51] MATTHEW B D,PHILLIPS F R,HENRY T C,et al. Spanwise wing morphing using multistable Cellular metastructures[J]. Extreme Mechanics Letters,2022,53:101706. [52] BILGEN O,FRISWELL M. Piezoceramic composite actuators for a solid-state variable-camber wing[J]. Journal of Intelligent Material Systems and Structures,2014,25(7):806-817. [53] REED JR J L,HEMMELGARN C,DPELLEY B M,et al. Adaptive wing structures[C]//2005 Smart Structures and Materials:Industrial and Commercial Applications of Smart Structures Technologies. San Diego:SPIE,2005:132-142. [54] LÉON O,HAYDEN E,GANDHI F. Rotorcraft operating envelope expansion using extendable chord sections[C]//American Helicopter Society 65th Annual Forum. California:AIAA,2009:1940-1953. [55] BALZAREK C,KALOW S,RIEMENSCHNEIDER J,et al. Manufacturing and testing of a variable chord extension for helicopter rotor blades[J]. Actuators,2022,11(2):53. [56] BARBARINO S,GANDHI F,WEBSTER S D. Design of extendable chord sections for morphing helicopter rotor blades[J]. Journal of Intelligent Material Systems and Structures,2011,22:891-905. [57] PERKINS D,REED J,HAVENS E. Morphing wing structures for loitering air vehicles[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference. Palm Springs,California:AIAA/ASME/ASCE/AHS/ASC,2004:1888. [58] LEE D S,SRINIVAS K,PERIAUX J,et al. Shock-free aerofoil/wing design optimisation via morphing technique:Leading and trailing edge deformation[C]//7th International Conference on Computational Fluid Dynamics. Hawaii:ICCFD,2012:1-10. [59] SATTI R,LI Y,SHOCK R,et al. Computational aeroacoustic analysis of a high-lift configuration[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno,Nevada:AIAA,2008:34. [60] KINTSCHER M. Method for the pre-design of a smart droop nose device using a simplex optimization scheme[R]. SAE,2009-01-3133,2009. [61] VASISTA S,RIEMENSCHNEIDER J,MONNER H P,et al. Manufacture and testing of a large-displacement droop-nose morphing wing leading edge[C]//AIAA Scitech 2019 Forum. San Diego,California:AIAA,2019:1858. [62] VASISTA S,NOLTE F,MONNER H P,et al. Three-dimensional design of a large-displacement morphing wing droop nose device[J]. Journal of Intelligent Material Systems and Structures,2018,29(16):3222-3241. [63] LI Yuzhu,GE Wenjie,ZHOU Jin,et al. Design and experiment of concentrated flexibility-based variable camber morphing wing[J]. Chinese Journal of Aeronautics,2022,35(5):455-469. [64] WANG Chen,ZHANG Jiayi,SHAW A D,et al. Integration of the spiral pulley negative stiffness mechanism into the FishBAC morphing wing[C]//9th ECCOMAS Themat. Conf. Smart Struct. Mater. Paris,France:2019. [65] AMENDOLA G,DIMINO I,MAGNIFICO M,et al. Distributed actuation concepts for a morphing aileron device[J]. The Aeronautical Journal,2016,120(1231):1365-1385. [66] PECORA R. Multi-modal morphing wing flaps for next generation green regional aircraft:The CleanSky challenge[C]//American Society of Mechanical Engineers. Smart Materials,Adaptive Structures and Intelligent Systems,September 10-12,2018,San Antonio,Texas,USA. ASME,2018:1-10. [67] ELLIS A,SUN C Z,XI F,et al. A single actuator mechanism for airfoil shape morphing[C]//American Society of Mechanical Engineers. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,August 26-29,2018,Quebec City,Quebec,Canada. ASME,2018:1-10. [68] TIAN Y,QUAN J,LIU P,et al. Mechanism/structure/aerodynamic multidisciplinary optimization of flexible high-lift devices for transport aircraft[J]. Aerospace Science and Technology,2018,93(9):104813. [69] SHI X,YANG Y,WANG Z,et al. Design and shape monitoring of a morphing wing trailing edge[J]. Aerospace,2023,10(2):127. [70] CAVALIERI V,GASPARI A D,RICCI S. Optimization of compliant adaptive structures in the design of a morphing droop nose[J]. Smart Materials and Structures,2020,29(7):075020. [71] GASPARI A D,RICCI S. A two-level approach for the optimal design of morphing wings based on compliant structures[J]. Journal of Intelligent Material Systems and Structures,2011,22(10):1091-1111. [72] ZHANG Y,GE W,ZHANG Z,et al. Design of compliant mechanism-based variable camber morphing wing with nonlinear large deformation[J]. International Journal of Advanced Robotic Systems,2019,16(6):1-19. [73] 同新星. 复合材料层合板柔性机构拓扑优化方法研究[D]. 西安:西北工业大学,2017. TONG Xinxing. Research on topology optimization method of composite laminate compliant mechanism[D]. Xi'an:Northwestern Polytechnical University,2017. [74] 张永红,葛文杰,寇鑫,等. 一种载荷路径可控的柔性机翼前缘拓扑优化方法[J]. 西北工业大学学报,2013,31(3):355-361. ZHANG Yonghong,GE Wenjie,KOU Xin,et al. Topology optimization for leading edge of adaptive wingemploying controllable load-path approach[J]. Journal of Northwestern Polytechnical University,2013,31(3):355-361. [75] KEIDEL D,LIENHARD M,FASEL U,et al. Design and testing of a lattice morphing wing[C]//American Society of Mechanical Engineers. Smart Materials,Adaptive Structures and Intelligent Systems,September 15,2020Virtual,Online. ASME,2020:1-13. [76] 宫晓博. 基于变刚度蒙皮和零泊松比蜂窝的变弯度机翼结构研究[D]. 哈尔滨:哈尔滨工业大学,2017. GONG Xiaobo. Research on variable bending wing structure based on variable stiffness skin and zero Poisson's Ratio honeycomb[D]. Harbin:Harbin Institute of Technology,2017. [77] KUMAR D,ALI S F,AROCKIARAJAN A. Structural and aerodynamics studies on various wing configurations for morphing[J]. IFAC-Papers OnLine,2018,51(1):498-503. [78] JIA S,ZHANG Z,ZHANG H,et al. Wind tunnel tests of 3D-Printed variable camber morphing wing[J]. Aerospace,2022,9(11):699. [79] BISHAY P L,KOK J S,FERRUSQUILLA L J,et al. Design and analysis of MataMorph-3:A fully morphing UAV with Camber-Morphing wings and tail stabilizers[J]. Aerospace,2022,9(7):382. [80] XIAO L,ZHAO H,XU Z,et al. A new architecture of morphing wing based on hyperelastic materials and metastructures with tunable stiffness[J]. Frontiers in Mechanical Engineering,2022,7:5113. [81] DHARMDAS A,PATIL A Y,BAIG A,et al. An experimental and simulation study of the active cambermorphing concept on airfoils using bio-inspired structures[J]. Biomimetics,2023,8(2):251. [82] 辛涛,李斌. 一种刚柔混合弦向变弯度机翼后缘设计[J]. 兵工学报,2023,44(8):2465-2476. XIN Tao,LI Bin. Design of trailing edge of a rigid-flexible chord-wise variable camber wing[J]. Acta Armamentarii,2023,44(8):2465-2476. [83] LAZOS B S. Biologically inspired fixed-wing configuration studies[J]. Journal of Aircraft,2005,42(5):1089-1098. [84] MANZO J,GARCIA E,WICKENHEISER A,et al. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism[C]//SPIE. Smart Structures and Materials 2005:Smart Structures and Integrated Systems,May 17,2005,San Diego,California,United States. SPIE,2005:232-240. [85] YUN Z,FENG Y,TANG X,et al. Analysis of motion characteristics of bionic morphing wing based on sarrus linkages[J]. Applied Sciences,2022,12(12):6023. [86] XI F,MOOSAVIAN A,CAMPOS G H,et al. Analysis and control of an Actuation-Redundant parallel mechanism requiring synchronization[J]. Journal of Mechanisms and Robotics,2020,12(4):044501. [87] 谭昕. 波音777X的变革和启示[J]. 大飞机,2018,43(1):32-35. TAN Xin. The transformation and enlightenment of Boeing 777X[J]. Large Aircraft,2018,43(1):32-35. [88] BAI X,XING X,LIU L,et al. Design of a Trans-Media aircraft morphing wing structure[C]//IEEE. 20202nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM),October 15-17,2020,Manchester,United Kingdom. New York:IEEE,2020:33-37. [89] CHEN X,LIU J,LI Q. The smart morphing winglet driven by the piezoelectric Macro Fiber Composite actuator[J]. The Aeronautical Journal,2022,126(1299):830-847. [90] RAMRAKHYANI D S,LESIEUTRE G A,FRECKER M,et al. Aircraft structural morphing using tendon- actuated compliant cellular trusses[J]. Journal of Aircraft,2005,42(6):1614-1620. [91] MEYER P,TRAUB H,HÜHNE C. Actuated adaptive wingtips on transport aircraft:Requirements and preliminary design using pressure-actuated cellular structures[J]. Aerospace Science and Technology,2022,128(3):107735. [92] 黄凯. 负压式折叠翼设计及力学性能研究[D]. 哈尔滨:哈尔滨工程大学,2020. HUANG Kai. Design and mechanical performance study of negative pressure folding wing[D]. Harbin:Harbin Engineering University,2020. [93] SKILLEN M D,CROSSLEY W A. Modeling and optimization for morphing wing concept generation II,part I:Morphing wing modeling and structural sizing techniques[R]. NASA Report,2008. [94] HAN M W,RODRIGUE H,KIM H I,et al. Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles[J]. Composite Structures,2016,140(1):202-212. [95] SUN J,DU L,SCARPA F,et al. Morphing wingtip structure based on active inflatable honeycomb and shape memory polymer composite skin:A conceptual work[J]. Aerospace Science and Technology,2021,111:106541. [96] PENDLETON E W,BESSETTE D,FIELD P B,et al. Active aeroelastic wing flight research program:Technical program and model analytical development[J]. Journal of Aircraft,2000,37(4):554-561. [97] SAUNDERS R N,HARTL D J,BOYD J G,et al. Modeling and development of a twisting wing using inductively heated shape memory alloy actuators[C]//SPIE. Active and Passive Smart Structures and Integrated Systems 2015,April 4,2015,San Diego,California,United States. SPIE,2015:263-270. [98] VOS R,GÜRDAL Z,ABDALLA M. Mechanism for warp-controlled twist of a morphing wing[J]. Journal of Aircraft,2010,47(2):450-457. [99] PHAM N K,HERNANDE E A P. Modeling and design exploration of a morphing wing enabled by a twisting tensegrity mechanism[C]//AIAA. AIAA Scitech 2021 Forum,January 11-15&19-21,2021. AIAA,2021:0099. [100] GUAN W,PHAM N K,HERNANDEZ E A P. Design exploration of a tensegrity twisting wing enabled by shape memory alloy wire actuation[C]//SPIE. Active and Passive Smart Structures and Integrated Systems XV,March 22,2021. SPIE,2021:16-32. [101] PHAM N K,PERAZA HERNANDEZ E A. Modeling and design exploration of a tensegrity-based twisting wing[J]. Journal of Mechanisms and Robotics,2021,13(3):1-9. [102] CLARKE R,ALLEN M,DIBLEY R,et al. Flight test of the F/A-18 active aeroelastic wing airplane[C]//AIAA. AIAA Atmospheric Flight Mechanics Conference and Exhibit,August 15-182005,San Francisco,California. AIAA,2005:6316. [103] DAYNES S,LACHENAL X,WEAVER P M. Concept for morphing airfoil with zero torsional stiffness[J]. Thin-Walled Structures,2015,94:129-134. [104] RUNKEL F,REBER A,MOLINARI G,et al. Passive twisting of composite beam structures by elastic instabilities[J]. Composite Structures,2016,147(2):274-285. [105] RUNKEL F,FASELl U,MOLINARI G,et al. Wing twisting by elastic instability:A purely passive approach[J]. Composite Structures,2018,206(7):750-761. [106] JENETT B,CALISCH S,CELLUCCI D,et al. Digital morphing wing:Active wing shaping concept using composite lattice-based cellular structures[J]. Soft Robotics,2017,4(1):33-48. [107] CRAMER N,TEBYANI M,STONE K,et al. Design and testing of FERVOR:Flexible and reconfigurable voxel-based robot[C]//IEEE. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),September 24-28,2017,Vancouver,BC,Canada. IEEE,2017:2730-2735. [108] CRAMER N B,CELLUCCI D W,FORMOSO O B,et al. Elastic shape morphing of ultralight structures by programmable assembly[J]. Smart Materials and Structures,2019,28(5):055006. [109] AUSTIN F,ROSSI M J,NOSTRAND W V,et al. Static shape control for adaptive wings[J]. AIAA Journal,1994,32(9):1895-1901. [110] NIEMIEC R,JACOBELLIS G,GANDHI F. Leading- and trailing-edge reversal of a cambered airfoil for stopped rotors[C]. AIAA. 56th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,January 5-9,2015,Kissimmee,Florida. AIAA,2015:0952. [111] NIEMIEC R,JACOBELLIS G,GANDHI F. Reversible airfoils for stopped rotors in high speed flight[J]. Smart Materials and Structures,2014,23(11):1-13. [112] GEORGES T,BRAILOVSKI V,MORELLON E,et al. Wind-tunnel testing of shape memory alloys actuators as morphing wing driving systems[C]//ASME. Smart Materials,Adaptive Structures and Intelligent Systems,September 21-23,2009,Oxnard,California,USA. ASME,2010:169-174. [113] POPOV A V,LABIB M,FAYS J,et al. Closed-loop control simulations on a morphing wing[J]. Journal of Aircraft,2008,45(5):1794-1803. [114] WU J,LI J,YAN S. Design of deployable bistable structures for morphing skin and its structural optimization[J]. Engineering Optimization,2014,46(6):745-762. [115] BILGEN O,FRISWELL M I. Piezoceramic composite actuators for a solid-state variable-camber wing[J]. Journal of Intelligent Material Systems and Structures,2014,25(7):806-817. [116] NEAL D A,GOOD M G,JOHNSTON C O,et al. Design and wind-tunnel analysis of a fully adaptive aircraft configuration[C]//AIAA. 45thAIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference,April 19-22,2004,Palm Springs,California. AIAA,2004:1-9. [117] 王臻,杨智春,崔高伟,等. 变后掠伸缩变体机翼的受控运动[J]. 机械科学与技术,2010,29(10):1314-1319. WANG Zhen,YANG Zhichun,CUI Gaowei,et al. Kinematics of a morphing wing with variable span and sweep[J]. Mechanical Science and Technology for Aerospace Engineering,2010,29(10):1314-1319. [118] SADIQUE M,AJAJ R M,KHAN K A. A compliant polymorphing wing for small UAVs[J]. Chinese Journal of Aeronautics,2020,33(10):2575-2588. [119] PARANCHEERIVILAKKATHIL M S,HAIDER Z,AJAJ R M,et al. A polymorphing wing capable of span extension and variable pitch[J]. Aerospace,2022,9(4):205. [120] 田鑫. 基于3-RPS并联机构的自适应机翼方法实现及其测控系统研究[D]. 南京:南京航空航天大学,2011. TIAN Xin. Implementation of adaptive wing method based on 3-RPS parallel mechanism and research on its measurement and control system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2011. [121] MOOSAVIAN A,XI F,HASHEMI S M. Design and motion control of fully variable morphing wing[J]. Journal of Aircraft,2013,50(4):1189-1201. [122] MOOSAVIAN A. Variable geometry wing-box:Toward a robotic morphing wing[D]. Toronto:Ryerson University,2014. [123] FINISTAURI A D. Conceptual design of a modular morphing wing[D]. Toronto:Ryerson University,2013. [124] SHANMUGAM P,RAJA S,PARAMMASIVAM K. A study on VGTM actuation system for multi-axis morphing wing of UAV[C]//AIAA. 34th AIAA Applied Aerodynamics Conference,June 13-17,2016,Washington,D.C. AIAA,2016:1-11. [125] 张蒂. 基于四面体桁架的飞行器变形骨架研究[D]. 哈尔滨:哈尔滨工业大学,2018. ZHANG Di. Research on deformation skeleton of aircraft based on tetrahedral truss[D]. Harbin:Harbin Institute of Technology,2018. [126] FINISTAURI A D,XI F. Type synthesis and kinematics of a modular variable geometry truss mechanism for aircraft wing morphing[C]//IEEE. 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots,June 22-24,2009,London,UK. IEEE,2009:478-485. [127] SUN J,LI X,XU Y,et al. Morphing wing based on trigonal bipyramidal tensegrity structure and parallel mechanism[J]. Machines,2022,10(10):930. [128] MOOSAVIAN A,SUN C Z,XI F,et al. Dimensional synthesis of a multi-loop linkage with single input using parameterized curves[J]. Journal of Mechanisms & Robotics,2017,9(2):021007. [129] WANG J,ZHAO Y,XI F,et al. Design and analysis of a configuration-based lengthwise morphing structure[J]. Mechanism and Machine Theory,2020,147(9):103767. [130] DANIEL M,ARTEMIS X,ALBERTO M,et al. Autonomous material composite morphing wing[J]. Journal of Composite Materials,2023,57(4):711-720. |
[1] | 周文雅, 张宗宇, 王晓明, 吕维梁, 钱卫. 机翼中小尺度主动变形研究进展及关键技术[J]. 机械工程学报, 2021, 57(2): 121-138. |
[2] | 何妍颖, 李晔卓, 武建昫, 刘兴杰, 姚燕安. 多模式两轮移动机器人的设计与运动分析[J]. 机械工程学报, 2019, 55(23): 83-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||