[1] WU M P,OU C S,CHEN S L,et al. Complications and recommended practices for electrosurgery in laparoscopy[J]. American Journal of Surgery,2000,179(1):67-73. [2] HAROLD K L,POLLINGER H,MATTHEWS B D,et al. Comparison of ultrasonic energy,bipolar thermal energy,and vascular clips for the hemostasis of small-,medium-,and large-sized arteries[J]. Surgical Endoscopy & Other Interventional Techniques,2003,17(8):1228-1230. [3] DAVIDE D,CARTER,FIONA,et al. Electrosurgery and energized dissection[J]. Surgery,2014,32(3):126-130. [4] TAHERI A,MANSOORI P,SANDOVAL L F,et al. Electrosurgery:Part I. basics and principles[J]. Journal of the American Academy of Dermatology,2014,70(4):591.e1-e14. [5] MASSARWEH N N,COSGRIFF N,SLAKEY D P. Electrosurgery:History,principles,and current and future uses[J]. Journal of the American College of Surgeons,2006,202(3):520-530. [6] KUMAGAI S G,ROSALES R F,HUNTER G C,et al. Effects of electrocautery on midline laparotomy wound infection[J]. American Journal of Surgery,1991,162(6):620-622. [7] RYAN T P. New electrosurgical ball electrode with nonstick properties[J]. Proc SPIE,1998,3249:142-146. [8] MIKAMI T,TAKAHASHI A,HASHI K,et al. Performance of bipolar forceps during coagulation and its dependence on the tip material:A quantitative experimental assay. Technical note[J]. Journal of Neurosurgery,2004,100(1):133-138. [9] CUNNINGHAM J S. Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition Technique:US8303582 B2[P]. 2012-11-06. [10] CEVIKER N,KESHIL S,BAYKANER K,A new coated bipolar coagulator:Technical note[J]. Acta Neurochirurgica,1998,140(6):619-620. [11] KANG S K,KIM P Y,KOO I G,et al. Non-stick polymer coatings for energy-based surgical devices employed in vessel sealing[J]. Plasma Processes & Polymers,2012,9(4):446-452. [12] TAKESHI M,YOSHIHIRO M,IZUMI K,et al. Novel bipolar forceps with protein repellence using gold-polytetrafluoroethylene composite film[J]. Neurosurgery,2007,60(1):160-1. [13] SHIELDS C,MEAGHER E C,Electrically conductive/insulative over-shoe for tissue fusion:US7442193 B2[P]. 2008-10-28. [14] LEE F P,WANG D J,CHEN L K,et al. Antibacterial nanostructured composite films for biomedical applications:Microstructural characteristics,biocompatibility,and antibacterial mechanisms[J]. Biofouling,2013,29(3-4):295-305. [15] OU K L,CHENG H Y. The application of advanced nanostructured film in electrosurgical device:Anti-sticking behavior and thermal injury[J]. Journal of Nanomedicine & Nanotechnology,2015,6(3):1000291. [16] 刘光,张鹏飞,陈华伟,等. 载能电刀仿生防粘表面技术[J]. 机械工程学报,2018,54(17):21-27. LIU Guang,ZHANG Pengfei,CHEN Huawei,et al. Bio-inspired anti-adhesion surfaces of electrosurgical scalpel[J]. Journal of Mechanical engineering,2018,54(17):21-27. [17] LIN C C,LIN H J,LIN Y H,et al. Micro/nanostructured surface modification using femtosecond laser pulses on minimally invasive electrosurgical devices[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials,2017,105(4):865-873. [18] FELDMAN L,FUCHSHUBER P,JONES D B. SAGES manual on the fundamental use of surgical energy (FUSE) [M]. New York:Dordrecht Heidelberg,2011. [19] YAMAMOTO K,KIMURA T,NAM K,et al. Synthetic polymer-tissue adhesion using an ultrasonic scalpel[J]. Surgical Endoscopy,2011,25(4):1270-1275. [20] VETERE P F,LAZAROU G,MONDESIR C,et al. Strategies to minimize adhesion formation after surgery[J]. Journal of the Society of Laparoendoscopic Surgeons,2011,15:350-354. [21] VETERE P F,GEORGE L,RADU A,et al. Postoperative adhesion formation in a rabbit model:Monopolar electrosurgery versus ultrasonic scalpel[J]. Journal of the Society of Laparoendoscopic Surgeons,2015,19(2):e2015.00018. [22] PHILLIPS C K,HRUBY G W,DURAK E,et al. Tissue response to surgical energy devices[J]. Urology,2008,71(4):744-748. [23] YANG D,CONVERSE M C,MAHVI D M,et al. Measurement and analysis of tissue temperature during microwave liver ablation[J]. IEEE Trans Biomed Eng.,2007,54(1):150-155. [24] LEE J M,HAN J K,KIM S H,et al. An ex-vivo experimental study on optimization of bipolar radiofrequency liver ablation using perfusion-cooled electrodes.[J]. Acta Radiologica,2005,46(5):443. [25] 毕培信. 超声手术刀作用机理及载能控制研究[D]. 北京:北京航空航天大学,2015. BI PEIXIN. Research on ultrasonic scalpel action mechanism and energy control[D]. Beijing:Beihang University,2015. [26] DODDE,ROBERT E,et al. Monopolar electrosurgical thermal management for minimizing tissue damage.[J]. IEEE Transactions on Bio-medical Engineering,2012,59(1):167-73. [27] 徐明刚. 超声振动-气体介质电火花复合加工技术及机理研究[D]. 济南:山东大学,2007. XU MINGANG. Research on ultrasonic vibration-gas dielectric edm processing technology and mechanism[D]. Jinan:Shandong University,2007. [28] YAO G,ZHANG D,GENG D,et al. Improving anti-adhesion performance of electrosurgical electrode assisted with ultrasonic vibration[J]. Ultrasonics,2017,84:126-133. [29] LIANG Z,JIANFEI W,YUNJIANG L,et al. Effect of high-frequency electric field on the tissue sticking of minimally invasive electrosurgical devices[J]. Royal Society Open Science,2018,5(7):180125-. [30] BLEKHMAN I. Vibrational mechanics:Nonlinear dynamic effects,general approach,applications[M]. Singapore:World Scientific,2000. |