• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (22): 24-37.doi: 10.3901/JME.2020.22.024

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

面向柔性定制的并行不等效客车混装线生产计划主从联合优化

张炜1, 王少杰1, 甘雅文1, 侯亮1, 徐昌华2   

  1. 1. 厦门大学机电工程系 厦门 361005;
    2. 厦门金龙联合汽车工业有限公司 厦门 361023
  • 收稿日期:2020-04-01 修回日期:2020-07-03 出版日期:2020-11-20 发布日期:2020-12-31
  • 通讯作者: 侯亮(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为产品大批量定制技术、振动噪声控制和工业大数据。E-mail:hliang@xmu.edu.cn
  • 作者简介:张炜,男,1982年出生,博士研究生。主要研究方向为大批量定制设计、生产线规划。E-mail:zhangw@stu.xmu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51975495)。

Flexible Customization Oriented Leader-follower Joint Optimization of Production Planning for Parallel and Non-equivalence Bus Mixed-model Assembly Lines

ZHANG Wei1, WANG Shaojie1, GAN Yawen1, HOU Liang1, XU Changhua2   

  1. 1. Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005;
    2. Xiamen KingLong United Auto Industry Co., Ltd., Xiamen 361023
  • Received:2020-04-01 Revised:2020-07-03 Online:2020-11-20 Published:2020-12-31

摘要: 针对客车制造过程中多条异构混装线之间加工能力、作业时间不等效的特征,提出面向柔性定制的并行不等效客车混装线生产计划模型。分析订单分解和投产排序的耦合关联机理;以产品紧急度、匹配度以及产线负荷为目标,建立以订单分解为主、投产排序为从的主从联合优化模型。针对模型特征提出一种结合Pareto前沿解的双层交互式遗传算法。为了提高遗传算法的性能,引入自适应调整方法对交叉概率和变异概率进行改进,并采用小生境技术保证种群多样性。利用客车混装线中的案例对提出的模型进行了验证,并与多阶段遗传算法以及企业的实际方案进行了比较。所提出的使用双层交互式遗传算法的模型可以真实地代表企业的实际情况,并最大限度地提高混装线的效率。

关键词: 订单分解, 投产排序, 柔性定制, 主从联合优化, 不等效

Abstract: Due to the non-equivalent processing capacity and working time among multiple heterogeneous mixed-model assembly lines (MMALS) in the bus manufacturing process, a parallel non-equivalent production planning model for flexible customization is proposed. By analyzing the interactions between the order decomposition and production sequencing, a leader-follower joint optimization model that takes the order decomposition as the leader and production sequencing as the follower is proposed, in order to optimize the product urgency, matching degree and production line load. A bi-level interactive genetic algorithm with Pareto front-line solution is developed to solve the model. To improve the performance of the genetic algorithm, an adaptive adjustment method is introduced to guarantee the crossover and mutation probabilities and niche technology to ensure the diversity of population. The proposed model is verified using cases in MMALS of buses and compared with other two methods, namely, the multistage genetic algorithm and the actual scheme of the enterprise. The proposed model that uses the bi-level interactive genetic algorithm can represent the actual situation of the enterprise and maximize the efficiency of MMALS.

Key words: order decomposition, production sequencing, flexible customization, leader-follower joint optimization, non-equivalence

中图分类号: