机械工程学报 ›› 2019, Vol. 55 ›› Issue (23): 120-135.doi: 10.3901/JME.2019.23.120
郑玲1, 苏锦涛1, 万鑫铭2, 王菲1
收稿日期:
2018-12-05
修回日期:
2019-08-05
出版日期:
2019-12-05
发布日期:
2020-02-18
通讯作者:
郑玲(通信作者),女,1963年出生,教授,博士研究生导师。主要研究方向为振动与噪声控制。E-mail:zling@cqu.edu.cn
作者简介:
苏锦涛,男,1983年出生,博士研究生。主要研究方向为振动噪声分析与控制。E-mail:nvh2012@163.com;万鑫铭,男,1978年出生,博士,研究员。主要研究方向为汽车动态结构设计。E-mail:wanxiinming@caeri.com.cn;王菲,女,1993年出生,硕士研究生。主要研究方向为振动噪声分析。E-mail:wangfei@163.com
基金资助:
ZHENG Ling1, SU Jintao1, WAN Xinming2, WANG Fei1
Received:
2018-12-05
Revised:
2019-08-05
Online:
2019-12-05
Published:
2020-02-18
摘要: 在大型复杂的结构设计过程中,子结构综合与修正方法由于其快速、动态、综合等特点越来越广泛地应用于现代结构设计之中,以完善子结构综合与修正方法知识参考、引起国内学者关注该技术研究为目的,阐述了振动子结构与系统之间的综合与修正方法。在子结构综合方法中,主要对比分析了模态缩减与综合、频域JETMUNDSEN、REN、机械阻抗导纳法综合法、频响函数奇异值分解降噪法、子系统转角自由度刚柔等效及转换方法的原理及应用,评述了上述方法的优点与不足,就尚未解决的问题作了进一步探讨;在子结构修正方法中,对比分析了多重参考基准修正法、目标函数动态修正法、参数型修正、神经网络型修正、灵敏度修正、频响函数修正等方法的应用,总结了模型修正方法中存在的一些问题。最后,提出了振动子结构综合及修正方法的研究趋势。
中图分类号:
郑玲, 苏锦涛, 万鑫铭, 王菲. 振动子结构综合与修正方法研究综述[J]. 机械工程学报, 2019, 55(23): 120-135.
ZHENG Ling, SU Jintao, WAN Xinming, WANG Fei. Research on the Synthesis and Modification of Vibration Substructure[J]. Journal of Mechanical Engineering, 2019, 55(23): 120-135.
[1] OKTAV A, YILMAZ Ç, ANLAŞ G. Transfer path analysis:Current practice, trade-offs and consideration of damping[J]. Mechanical Systems & Signal Processing, 2017, 12(8):760-772. [2] KEERSMAEKERS L, MERTENS L, PENNE R, et al. Decoupling of mechanical systems based on in-situ frequency response functions:The link-preserving, decoupling method[J]. Mechanical Systems & Signal Processing, 2015, 12(5):340-354. [3] REN Y, BEARDS C F. On substructure synthesis with FRF data[J]. Journal of Sound and Vibration, 2001, 185(5):845-866. [4] LIU W, EWINS D J, EWINS. Substructure synthesis via elastic media[J]. Journal of Sound and Vibration, 2002, 257(2):361-379. [5] LEE D H, HWANG W S. An identification method for joint structural parameters using an FRF-based substructuring method and an optimization technique[J]. Journal of Mechanical Science & Technology, 2007, 21(12):2011-2022. [6] KLERK D D, RIXEN D J, VOORMEEREN S N. General framework for dynamic substructuring:history, review and classification of techniques[J]. AIAA Journal, 2008, 46(5):1169-1181. [7] VOORMEEREN S N, VALK P L C V, RIXEN D J. Generalized methodology for assembly and reduction of component models for dynamic substructuring[J]. AIAA Journal, 2011, 49(5):1010-1020. [8] CRAIG R J. Coupling of substructures for dynamic analyses-An overview[C]//41st Structural Dynamics and Materials Conference and Exhibit, April, 2000, Atlanta, USA. 2000:1-7. [9] HOU S N. Review of modal synthesis techniques and a new approach[J]. Shock and vibration,1969,40(4):25-39. [10] CRAIG R, CHANG C J. Free-interface methods of substructure coupling for dynamic analysis[J]. AIAA Journal, 1976, 14(11):1633-1635. [11] SUAREZ L E, SINGH M P. Improved fixed interface method for modal synthesis[J]. AIAA Journal, 1992, 30(12):2952-2958. [12] BISHOP R E D, JOHNSON D C. The mechanics of vibration[D]. Cambridge:Cambridge University Press, 1960. [13] O'HARA G J. Mechanical impedance and mobility concepts[J]. The Journal of the Acoustical Society of America, 1967, 41(5):1180-1184. [14] GUYAN R J. Reduction of stiffness and mass matrices[J]. AIAA Journal, 1965, 3(2):380-380. [15] O'CALLAHAN J C. A procedure for an improved reduced system (IRS) model[C]//Proceedings of the 7th International Modal Analysis Conference, 1989, Las Vegas, USA. New York:Union College Press, 1989:17-21. [16] KIDDER R L. Reduction of structural frequency equations[J]. AIAA Journal, 1973, 11(6):892-899. [17] O'CALLAHAN J. System equivalent reduction expansion process (SEREP)[C]//Proceedings of the 7th International Modal Analysis Conference, 1989, Las Vegas, USA. New York:Union College Press, 1989:29-37. [18] RAYNAUDJ L, BOUHADDI N, PERRIOT A, et al. Updating complex structures by a robust multilevel condensation approach[J]. Journal of Sound and Vibration, 2004, 270(1-2):403-416. [19] SUNG S H, NEFSKE D J. Component mode synthesis of a vehicle structural-acoustic system model[J]. AIAA Journal, 1986, 24(6):1021-1026. [20] LEE J. Vibration analysis of a vehicle body and suspension system using a substructure synthesis method[J]. International Journal of Vehicle Design, 2000, 24(4):360-371. [21] QIU J B, WILLIAMS F W, QIU R X. A new exact substructure method using mixed modes[J]. Journal of Sound and Vibration, 2003, 266(4):737-757. [22] DONDERS S, PLUYMERS B, RAGNARSSON P, et al. The wave-based substructuring approach for the efficient description of interface dynamics in substructuring[J]. Journal of Sound and Vibration, 2010, 329(8):1062-1080. [23] BISHOP R E D, JOHNSON D C. The mechanics of vibration[D]. Cambridge:Cambridge University Press, 2011. [24] JETMUNDSEN B, BIELAWA R L, FLANNELLY W G. Generalized frequency domain substructure synthesis[J]. Journal of the American Helicopter Society, 1988, 33(1):55-64. [25] REN Y, BEARDS C. A generalized receptance coupling technique[C]//Proceedings of the 11th International Modal Analysis Conference, January, 1993, Kissimmee, USA. 1993:868-871. [26] IMREGUN M, ROBB D A. Structural modification and coupling dynamic analysis using measured FRF data[C]//Proceeding of the 5th International Modal Analysis Conference, 1987, London, England. 1987:1136-1141. [27] EWINS D J. Modal test requirements for coupled structure analysis using experimentally derived component models[C]//Experimental Analytical Modeling of Dynamic Structural Systems, 1985, Albuquerque, USA. ASME, 1985:31-47. [28] SANLITURK K Y, CAKAR O. Noise elimination from measured frequency response functions[J]. Mechanical Systems & Signal Processing, 2005, 19(3):615-631. [29] EPHRAIM Y, TREES H L V. A signal subspace approach for speech enhancement[J]. IEEE Trans Speech Audio Process, 1995, 3(4):251-266. [30] JOHNSON M T, POVINELLI R J. Generalized phase space projection for nonlinear noise reduction[J]. Physical D Nonlinear Phenomena, 2005, 201(3):306-317. [31] HU Y, LOIZOU P C. A subspace approach for enhancing speech corrupted by colored noise[J]. Signal Processing Letters IEEE, 2002, 9(7):204-206. [32] HERMUS K, WAMBACQ P, HAMME H V. A review of signal subspace speech enhancement and its application to noise robust speech recognition[J]. Eurasip Journal on Advance in Signal Processing, 2007, (1):1-15. [33] KLERK D, RIXEN D J, VOORMEEREN S N, et al. Solving the Rdof problem in experimental dynamic substructuring[C]//26th International Modal Analysis Conference (IMACXXVI), 2008, Orlando, USA, 2008:1-15. [34] DUARTE M L, EWINS D J. Rotational degrees of freedom for structural coupling analysis via finitedifference technique with residual compensation[J]. Mechanical Systems and Signal Processing, 2000, 14(2):205-227. [35] VAROTO P S, LOFRANO M, CICOGNA T R, et al. Moment mobility FRF measurement techniques[C]//IMAC-XXIV Conference & Exposition on Structural Dynamics, January, 2006, Louis, Missouri. 2006:1-13. [36] BREGANT L, CASAGRANDE D. Rotational degrees of freedom data synthesis based on force excitation[C]//Proceedings of the International Seminar on Modal Analysis ISMA25, 2001, Leuven, Belgica. 2001:981-988. [37] HELDERWEIRT S, AUWERAER H V D, MAS P, et al. Application of accelero-meter-based rotational degree of freedom measurements for engine subframe modelling[C]//Proceedings of the 19th International Modal Analysis Conference, 2001, Orlando, USA. 2001:1298-1304. [38] AVITABILE P, O'CALLAHAN J. Frequency response function expansion for unmeasured translation and rotation DOFS for impedance modelling applications[J]. Mechanical System and Signal Processing, 2003, 17(4):723-745. [39] SILVA J M M, MAIA N M M, RIBEIRO A M R. Indirect estimation of rotational frequency response functions[C]//Proceedings of the 19th International Modal Analysis Conference, February, 2001, Orlando, USA. 2001:1535-1542. [40] MONTALVÃO D, RIBEIRO A M R, MAIA N M M, et al. Estimation of the rotational terms of the dynamic response matrix[J]. Shock and vibration, 2004, 11(3):333-350. [41] 薛伟敏, 华宏星. 基于试验数据的频响函数综合法概述[J]. 噪声与振动控制, 2013, 33(4):71-73. XUE Weimin, HUA Hongxing. An overview of frequency response function synthesis based on experimental data[J]. Noise and Vibration Control, 2013, 33(4):71-73. [42] VAN DER SEIJS M V V D, KLERK D D, RIXEN D J, et al. Topics in experimental dynamic substructuring, volume 2[D]. Switzerland:Springer Nature, 2014. [43] PANDEY P C, BARAYR S V. Multilayer perecption in damage detection of bridges structures[J]. Computers& Structures, 1992, 42(4):649-659. [44] ATALLA M, INMAN D. On model updating using networks[J]. Mechanical Systems and Signal Processing, 1998, 12(1):135-161. [45] LEVIN R I, LIEVEN N A J, LOWENBERG M H. Measuring and improving neural network generalization for model updating[J]. Journal of Sound and Vibration, 2000, 238(3):401-424. [46] CHANG C C, CHANG T Y P, XU Y G, et al. Adaptive neural networks for model updating of structures[J]. Smart Materials and Structures, 2000, 9(1):59-68. [47] CHANG C C, CHANG T Y P, XU Y G, et al. Selection of training samples for model updating using neural networks[J]. Journal of Sound and vibration, 2002, 249(5):867-883. [48] VANIK M W, BECK J L, AU S K. Bayesian probabilistic approach to structural health monitoring[J]. Journal of Engineering Mechanics, 2000, 126(7):738-751. [49] WU X, GHABOUSSI J, JR J H G. Use of neural networks in detection of structural damage[J]. Computers & Structures, 1992, 42(4):649-659. [50] LU Y, TU Z. A two-level neural networks approach for dynamic FE model updating including damping[J]. Journal of Sound and Vibration, 2004, 275(3):931-952. [51] TSOU P, SHEN M H H. Structural damage detection and identification using neural networks[J]. AIAA Journal, 1994, 32(1):176-183. [52] YUN C B, BAHNG E Y. Substructural identification using neural networks[J]. Computers & Structure, 2000, 77(1):41-52. [53] XU B, WU Z S, CHEN G D, et al. Direct identification of structural parameters from dynamic responses with Neural networks[J]. Engineering Application of Artificial Intelligence, 2004, 17(8):931-943. [54] FOX R L, KAPOOR M P. Rates of change of eigenvalues and eigenvectors[J]. AIAA Journal, 1968, 6(12):2423-2428. [55] ROGERS L C. Derivatives of eigenvalues and eigenvectors[J]. AIAA Journal, 1970, 8(5):944-945. [56] GARG S. Derivatives of eigensolutions for a general matrix[J]. AIAA Journal, 1973, 11(8):1191-1193. [57] NELSON R B. Simplified calculation of eigenvector derivatives[J]. AIAA Journal, 1976, 14(9):1201-1205. [58] LIM K B, JUNKINS J L, WANG B P. Re-examination of Eigenvector derivatives[J]. Journal of Guidance Control And Dynamics, 1987, 10(6):581-587. [59] ZHANG Q W, CHANG C C, CHANG T Y P. Finite element modal updating for structures with parametric constrains[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(7):927-944. [60] FARHAT C, HEMEZ F M. Updating finite element dynamic models using an element-by-element sensitivity methodology[J]. AIAA Journal, 1993, 31(9):1702-1710. [61] HEMEZ F, BROWN G. Improving structural dynamics models by correlating simulated to measured frequency response functions[C]//Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics, & Materials Conference & Exhibit, April, 1998, Long Beach, USA. 1998:772-779. [62] HU S L J, LI H, WANG S. Cross-model cross-mode method for model updating[J]. Mechanical Systems & Signal Processing, 2007, 21(4):1690-1703. [63] NATKE H G. Die korrektur des rechenmodells eines elastomechanischen Systems mittels gemessener erzwungener schwingungen[J]. Ingenieur-Archiv, 1977, 46(3):169-184. [64] FOSTER C D, MOTTERSHEAD J E. A method for improving finite element models by using experimental data:Application and implications for vibration monitoring[J]. International Journal of Mechanical Science, 1990, 32(3):191-203. [65] LINK M. Identification and correction of errors in analytical models using test data:The pretical and practical bounds C]//Proceedings of the 8th International Modal Analysis Conference, 1990, Orlando, USA. New York:Society for Experimental Mechanics, 1990:570-578. [66] FRISWELL M I, PENNY J E T. Updating model parameters from frequency domain data via reduced order model[J]. Mechanical Systems and Signal processing, 1990, 4(5):377-391. [67] LARSSON P O, SAS P. Model updating based on forced vibration testing using numerically stable formulations[C]//10th International Modal Analysis Conference, February, 1992, San Diego, USA. 1992:968-974. [68] LIN R M, EWINS D J. Model updating using FRF data.[C]//Proceedings of the 15th International Seminar on Modal Analysis, 1990, Leuven, Belgium. 1990:141-163. [69] VISSER W J, IMREGUN M. A technique to update finite element models using frequency response data[C]//Proceedings of the 9th International Modal Analysis Conference, 1991, Florence, USA. Kissimmee:Union College, 1991:462-468. [70] IMREGUN M, VISSER W J, EWINS D J. Finite element model updating using frequency response function data-I:Theory and initial investigation[J]. Mechanical Systems and Signal Processing, 1995, 9(2):187-202. [71] LINK M, ZHANG L. Experience with different procedures for updating structural parameter of analytical models using test data[C]//Proceedings of the 10th International Modal Analysis Conference, February, 1992, San Diego, USA. 1992:730-730. [72] ZANG C, GRAFE H, IMREGUN M. Frequency-domain criteria for correlating and updating dynamic finite element models[J]. Mechanical Systems and Signal Processing, 2001, 15(1):139-155. [73] KWON K S, LIN R M. Frequency selection method for FRF-based model updating[J]. Journal of sound and vibration, 2004, 278(1):285-306. [74] M IMREGUN, K Y SANLITURK, D J EWINS. Finite element model updating using frequency response function data-Ⅱ:Case study on a medium-size finite element model[J]. Mechanical Systems and Signal Processing, 1995, 9(2):203-213. [75] LIN R MZHU J. Finite element model updating using vibration test data under base excitation[J]. Journal of Sound and Vibration, 2007, 303(3-5):596-613. [76] ADHIKARI S, FRISWELL M I. Distributed parameter model updating using the KL expansion[J]. Mechanical Systems and Signal Processing, 2010, 24(2):326-339. [77] LARSSON P O. Model updating based on forced vibration testing using numerical stable formulations[C]//International Modal Analysis Conference. 10th International Modal Analysis Conference, February 3-7, 1992, San Diego, USA.1992:968-974. [78] STEENACKERS G, GUILLAUME P. Finite element model updating taking into account the uncertainty on the modal parameters estimates[J]. Journal of Sound and Vibration, 2006, 296(5):919-934. [79] MODAK S V, KUNDRA T K, NAKRA B C. Comparative study of model updating methods using simulated experimental data[J]. Computers & Structures, 2002, 80(5-6):437-447. [80] TEUGHELS A, ROECK G D, SUYKENS J A K. Global optimization by coupled local minimizers and its application to FE model updating[J]. Computers & structures, 2003, 81(24):2337-2351. [81] MARES C, SURACE C. An application of genetic algorithms to identify damage in elastic structures[J]. Journal of Sound & Vibration, 1996, 195(2):195-215. [82] FRISWELL M I, PENNY J E T, GARVEY S D. A combined genetic and eigensensitivity algorithm for the location of damage in structures[J]. Computers & Structures, 1998, 69(5):547-556. [83] DUNN S A. The use of genetic algorithms and stochastic hill-climbing in dynamic finite element model identification[J]. Computers & Structures, 1998, 66(4):489-497. [84] ZIMMERMAN D C, YAP K, HASSELMAN T. Evolutionary approach for model refinement[J]. Mechanical Systems and Signal Processing, 1999, 13(4):609-625. [85] LEVIN R I, LIEVIN N A J. Dynamical finite element model updating using simulated annealing and genetic algorithms[J]. Journal of Sound and Vibration, 1998, 12(1):91-120. [86] CHOU J H, GHABOUSSI J. Genetic algorithm in structural damage detection[J]. Computers & Structures, 2001, 79(14):1335-1353. [87] RAO M A, SRINIVA J, MURTHY B S N. Damage detection in vibrating bodies using genetic algorithms[J]. Computer & Structures, 2004, 82:963-968. [88] AU F T K, CHENG Y S, THAM L G, et al. Structural damage detection based on a micro-genetic algorithm using incomplete and noisy modal test data[J]. Journal of Sound and Vibration, 2003, 259(5):1081-1094. [89] BERMAN A, NAGY E J. Improvement of a large analytical model using test data[J]. AIAA Journal, 1983, 21(8):1168-1173. [90] HALEVI Y, BUCHER I. Model updating via weighted reference basis with connectivity constraints[J]. Journal of Sound and Vibration, 2003, 265(3):561-581. [91] DONDERS S, PLUYMERS B, RAGNARSSON P, et al. The wave-based substructuring approach for the efficient description of interface dynamics in substructuring[J]. Journal of Sound and Vibration, 2010, 329(8):1062-1080. [92] 吴仕超, 蔡国平. 考虑界面转角自由度的频域子结构方法研究[J]. 振动工程学报, 2011, 24(3):323-326. WU Shichao, CAI Guoping. FRF based substructuring technique considering rotational degrees of freedom of interface[J].Journal of Vibration Engineering, 2011, 24(3):323-326. [93] DROZGR A, GREGOR C, MIHA B. Full degrees of freedom frequency based substructuring[J]. Mechanical Systems and Signal Processing, 2018, 98(1):570-579. [94] 游彩霞,张光德,何雪松,等. 基于改进FBS理论的浮筏隔振系统计算方法[J].中国舰船研究, 2015, 10(1):109-113. YOU Caixia, ZHANG Guangde, HE Xuesong, et al. The calculation method of the isolation system based on the improved FBS theory[J].Chinese Journal of Ship Research, 2015, 10(1):109-113. [95] GUVENC C, NEVZAT H O. Model updating of nonlinear structures from measured FRFs[J]. Mechanical Systems and Signal Processing, 2016, 80(5):282-301. [96] WANGA Jutao, WANGA Chunjie, ZHAO Junpeng. Frequency response function-based model updating using kriging model[J]. Mechanical Systems and Signal Processing, 2017, 87(3):218-228. [97] 王乐, 牛智玲. 基于遗传算法的变截面梁模型修正方法研究[J]. 导弹与航天运载技术, 2013(2):60-63. WANG Le, NIU Zhiling. Study of non-uniform beam model updating method based on genetic algorithm[J]. Missiles and Space Vehicles, 2013(2):60-63. [98] GAGLIANO C. A hybrid full vehicle model for structure borne road noise prediction[C]//SAE 2005 Noise and Vibration Conference and Exhibition, 2005, Michigan, USA. Society of Automotive Engineers, 2005:01-2467. [99] MOTTERSHEAD J E, LINK M, FRISWELL M I.The sensitivity method in finite element model updating[J]. Mechanical Systems and Signal Processing,2011,25(7):2275-2296. [100] KIM K S, KANG Y J. Local stiffness control for reducing vehicle interior noise by using FRF-based synthesis method[J]. Journal of Mechanical Science and Technology, 2011, 25(1):81-88. [101] TERADA M, ONO S, et al. Development procedure for Interior noise performance by virtual vehicle refinement, combining experimental and numerical component models[C]//SAE 2001 Noise and Vibration Conference and Exhibition, 2001, Michigan, USA.Society of Automotive Engineers, 2001:283-284. |
[1] | 陈睿, 程诗敏, 温仕成, 赵子衡, 彭锐涛, 胡聪芳, 肖湘武. 基于J-C模型修正的7150-T6航空铝合金薄壁开孔圆管结构优化[J]. 机械工程学报, 2024, 60(11): 95-104. |
[2] | 张德权, 李星奥, 贾新宇, 叶楠, 韩旭. 基于分层贝叶斯推理的RV减速器动力学模型修正及动态响应预测方法[J]. 机械工程学报, 2024, 60(11): 135-144. |
[3] | 尹佳, 唐宇阳, 张俊, 赵万华. 基于复合加工特征的航空结构件频响快速预测[J]. 机械工程学报, 2023, 59(3): 200-207. |
[4] | 雷声, 毛宽民, 田微, 孔德龙. 基于模型修正的螺栓结合部虚拟材料参数识别及应用[J]. 机械工程学报, 2022, 58(21): 274-284. |
[5] | 叶松涛, 严思杰, 李文韬, 徐小虎, 陆家麟. 面向机器人铣削加工的刀尖动态特性分析与稳定性预测[J]. 机械工程学报, 2022, 58(17): 261-275. |
[6] | 陈涛, 褚志刚, 李沛然, 彭川, 杨亮. 基于伪频响函数矩阵法的运行模态分析方法[J]. 机械工程学报, 2021, 57(20): 266-276. |
[7] | 胡靖东, 刘长军, 轩福贞. 基于Cocks-Ashby模型的多轴蠕变设计准则的局限性及其修正[J]. 机械工程学报, 2017, 53(16): 141-147. |
[8] | 李翔宇, 张俊, 位文明, 赵万华. 车削加工过程中轴类工件频响函数的快速预测[J]. 机械工程学报, 2017, 53(15): 165-170. |
[9] | 张俊, 赵艳芹. Exechon并联模块的静刚度建模与分析*[J]. 机械工程学报, 2016, 52(19): 34-41. |
[10] | 李启行;王维民;齐鹏逸;高金吉. 转子轴承系统稳定性分析与识别方法[J]. , 2014, 50(7): 54-59. |
[11] | 邓小雷;傅建中;夏晨晖;付国强;陈子辰. 数控机床主轴系统热模型参数多目标修正方法[J]. , 2014, 50(15): 119-126. |
[12] | 肖钊;韩旭;杨刚. 基于区间技术的模型确认方法及应用[J]. , 2014, 50(14): 177-184. |
[13] | 李玲;蔡安江;蔡力钢;郭铁能;阮晓光. 栓接结合部动态特性辨识方法[J]. , 2013, 49(7): 168-175. |
[14] | 杨海峰;程珩;权龙. 灰色神经元拟合算法在有限元模型修正中的应用[J]. , 2013, 49(13): 63-68. |
[15] | 何成;陈国平;何欢. 径向基模型的不确定性模型区间修正与确认[J]. , 2013, 49(11): 128-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||