[1] HUANG Jiuchao, LIU Xianli, YUE Caixu, et al. Tool path planning of 5-axis finishing milling machining for closed blisk[J]. Materials Science Forum, 2012, 723:153-158. [2] AL-AHMAD M, D'ACUNTO A, MARTIN P. Prediction cutting forces system in plunge milling operations[J]. Fifth international conference on High Speed Machining, 2006, 29:385-396. [3] WAKAOKA S, YAMANE Y, SEKIYA K, et al. High-speed and high-accuracy plunge cutting for vertical walls[J]. Journal of Materials Processing Technology, 2002, 127(2):246-250. [4] LI Y, LIANG S Y, PETROF R C, et al. Force modelling for cylindrical plunge cutting[J]. The International Journal of Advanced Manufacturing Technology, 2000, 16(12):863-870. [5] WU Shi, YANG LIN, LIU Xianli, et al. Effects of curvature characteristics of sculptured surface on chatter stability for die milling[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9):2649-2662. [6] MAMEDOV A, LAZOGLU I. Machining forces and tool deflections in micro milling[J]. Procedia CIRP, 2013, 8:147-151. [7] SCIPPA A, GROSSI N, CAMPATELLI G. Milled surface generation model for chip thickness detection in peripheral milling[J]. Procedia CIRP, 2013, 8:450-455. [8] 魏兆成,王敏杰,蔡玉俊,等. 球头铣刀三维曲面加工的铣削力预报[J]. 机械工程学报, 2013, 49(1):178-184. WEI Zhaocheng, WANG Minjie, CAI Yujun, et al. Milling force prediction for ball-end milling of 3D curved surfaces[J]. Journal of Mechanical Engineering, 2013, 49(1):178-184. [9] YUE Caixu, HUANG Cui, LIU Xianli, et al. 3D FEM Simulation of Milling Force in Corner Machining Process[J]. Chinese Journal of Mechanical Engineering, 2017, 30(2):286-293. [10] LIU Xianli, LI Rongyi, WU Shi, et al. A prediction method of milling chatter stability for complex surface mold[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89:2637-2648. [11] BUDAK E, ALTINTAS Y, ARMAREGO E J A. Prediction of milling force coefficients from orthogonal cutting data[J]. Journal of Manufacturing Science and Engineering, 1996, 118(2):216-224. [12] WANG J J, ZHENG C M. Identification of shearing and ploughing cutting constants from average forces in ball-end milling[J]. International Journal of Machine Tools and Manufacture, 2002, 42(6):695-705. [13] GONZALO O, BERISTAIN J, JAUREGI H, et al. A method for the identification of the specific force coefficients for mechanistic milling simulation[J]. International Journal of Machine Tools and Manufacture, 2010, 50(9):765-774. [14] ALTINTAS Y, BER A A. Manufacturing automation:Metal cutting mechanics, machine tool vibrations, and CNC design[J]. Applied Mechanics Reviews, 2001, 54(2):84. [15] YAO Zhenqiang, LIANG Xinguang, LUO Lei, et al. A chatter free calibration method for determining cutter runout and cutting force coefficients in ball-end milling[J]. Journal of Materials Processing Technology, 2013, 213(9):1575-1587. [16] GROSSI N, SALLESE L,SCIPPA A,et al. Speed-varying cutting force coefficient identification in milling[J]. Precision Engineering, 2015, 42:321-334. [17] RUBEO M A, SCHMITZ T L. Mechanistic force model coefficients:A comparison of linear regression and nonlinear optimization[J]. Precision Engineering, 2016, 45:311-321. [18] CAMPATELLI G, SCIPPA A. Prediction of milling cutting force coefficients for Aluminum 6082-T4[J]. Procedia CIRP, 2012, 1:563-568. [19] SALGUERO J, BATISTA M, CALAMAZ M, et al. Cutting forces parametric model for the dry high speed contour milling of aerospace aluminium alloys[J]. Procedia Engineering, 2013, 63:735-742. [20] WANG Minghai, GAO Lei, ZHENG Yaohui. An examination of the fundamental mechanics of cutting force coefficients[J]. International Journal of Machine Tools and Manufacture, 2014, 78:1-7. [21] RAFANELLI F, CAMPATELLIG, SCIPPA A. Effects of cutting conditions on forces and force coefficients in plunge milling operations[J]. Advances in Mechanical Engineering, 2015, 7(6):1-9. |