[1] Pecht M G. Prognostics and health management of electronics[M]. New Jersey:John Wiley, 2008. [2] 裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55(8):1-13.PEI Hong, HU Changhua, SI Xiaosheng, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55(8):1-13. [3] Omshi E M, Grall A, Shemehsavar S. A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters[J]. European Journal of Operational Research, 2020, 282(1):81-92. [4] Lei Y G, Li N P, Guo L, et al. Machinery health prognostics:A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems & Signal Processing, 2018, 104:799-836. [5] Si X S, Wang W B, Hu C H, Zhou D H. Remaining useful life estimation-A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1):1-14. [6] 雷亚国, 陈吴, 李乃鹏, 等. 自适应多核组合相关向量机预测方法及其在机械设备剩余寿命预测中的应用[J]. 机械工程学报, 2016, 52(1):87-93.LEI Yaguo, CHEN Wu, LI Naipeng, et al. A relevance vector machine prediction method based on adaptive multi-kernel combination and its application to remaining useful life prediction of machinery[J]. Journal of Mechanical Engineering, 2016, 52(1):87-93. [7] Zhang Z X, Si X S, Hu C H, et al. Degradation data analysis and remaining useful life estimation:A review on wiener-process-based methods[J]. European Journal of Operational Research, 2018, 271(3):775-796. [8] 赵申坤, 姜潮, 龙湘云. 一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J]. 机械工程学报, 2018, 54(12):115-124.ZHAO Shenkun, JIANG Chao, LONG Xiangyun. Remaining useful life estimation of mechanical systems based on the data-driven method and Bayesian theory[J]. Journal of Mechanical Engineering, 2018, 54(12):115-124. [9] Pham H, Wang H. Imperfect maintenance[J]. European Journal of Operational Research, 1996, 94(3):425-438. [10] Do P, Voisin A, Levrat E, et al. A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions[J]. Reliability Engineering & System Safety, 2015, 133:22-32. [11] Wang Z Q, Hu C H, Si X S, et al. Remaining useful life prediction of degrading systems subjected to imperfect maintenance:Application to draught fans[J]. Mechanical Systems and Signal Processing, 2018, 100:802-813. [12] Zhang M, Gaudoin O, Xie M. Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance[J]. European Journal of Operational Research, 2015, 245(2):531-541. [13] Guo C, Wang W, Guo B, et al. A maintenance optimization model for mission-oriented systems based on Wiener degradation[J]. Reliability Engineering & System Safety, 2013, 111:183-194. [14] Ahmadi R. Scheduling preventive maintenance for a nonperiodically inspected deteriorating system[J]. International Journal of Reliability, Quality and Safety Engineering, 2015, 22(6):1550029. [15] Castro I T, Mercier S. Performance measures for a deteriorating system subject to imperfect maintenance and delayed repairs[J]. Proceedings of the Institution of Mechanical Engineers, Part O:Journal of Risk and Reliability, 2016, 230(4):364-377. [16] Huynh K T. A hybrid condition-based maintenance model for deteriorating systems subject to nonmemoryless imperfect repairs and perfect replacements[J]. IEEE Transactions on Reliability, 2019, 69(2):781-815. [17] Huynh K T. Modeling past-dependent partial repairs for condition-based maintenance of continuously deteriorating systems[J]. European Journal of Operational Research, 2020, 280(1):152-163. [18] You M Y, MENG G. Residual life prediction of repairable systems subject to imperfect preventive maintenance using extended proportional hazards model[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2012, 226(1):50-63. [19] 王泽洲, 陈云翔, 蔡忠义, 等. 基于复合非齐次泊松过程的不完美维修设备剩余寿命预测[J]. 机械工程学报, 2020, 56(22):14-23.WANG Zezhou, CHEN Yunxiang, CAI Zhongyi, et al. Remaining useful lifetime prediction of the equipment subjected to imperfect maintenance based on the compound nonhomogeneous poisson process[J]. Journal of Mechanical Engineering, 2020, 56(22):14-23. [20] Hu C H, Pei H, Wang Z Q, et al. A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities[J]. Chinese Journal of Aeronautics, 2018, 31(3):514-528. [21] 胡昌华, 裴洪, 王兆强, 等. 不完美维护活动干预下的设备剩余寿命估计[J]. 中国惯性技术学报, 2016, 24(5):688-695.Hu Changhua, Pei Hong, Wang Zhaoqiang, et al. Remaining useful lifetime estimation for equipment subjected to intervention of imperfect maintenance activities[J]. Journal of Chinese Inertial Technology, 2016, 24(5):688-695. [22] Si X S, Wang W, Hu C H, et al. A Wiener process based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems & Signal Processing, 2013, 35(1-2):219-237. [23] Si X S, Wang W, Hu C H, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability, 2012, 61(1):50-67. [24] Pei H, Si X S, Hu C H, et al. A multi-stage Wiener process-based prognostic model for equipment considering the influence of imperfect maintenance activities[J]. Journal of Intelligent & Fuzzy Systems, 2018, 34(6):3695-3705. [25] Harvey A. Forecasting, structural time series models and the Kalman filter[M]. Cambridge:Cambridge University Press, 1990. [26] Xu C, Chang G S. Exact distribution of the convolution of negative binomial random variables[M]. Commun Stat-Theory Methods, 2016, 46(6):2851-2586. [27] Lagarias J C, Reeds J A, Wright M H, et al. Convergence properties of the Nelder——Mead simplex method in low dimensions[J]. SIAM Journal on Optimization, 1998, 9(1):112-147. [28] Dewar M, Scerri K, Kadirkamanathan V. Data-driven spatio-temporal modeling using the integro-difference equation[J]. IEEE Transactions on Signal Processing, 2009, 57(1):83-91. [29] Wang X, Guo B, Cheng Z. Residual life estimation based on bivariate Wiener degradation process with time-scale transformations[J]. Journal of Statistical Computation and Simulation, 2014, 84(3):545-563. [30] Son K L, Fouladirad M, Barros A, et al. Remaining useful life estimation based on stochastic deterioration models:A comparative study[J]. Reliability Engineering & System Safety, 2013, 112(4):165-175. [31] Wang T, Hu M, Zhao Y. Consensus control with a constant gain for discrete-time binary-valued multi-agent systems based on a projected empirical measure method[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(4):1052-1059. |