[1] 李天梅,司小胜,刘翔,等. 大数据下数模联动的随机 退化设备剩余寿命预测技术[J]. 自动化学报, 2022, 48(9): 23 LI Tianmei, SI Xiaosheng, LIU Xiang, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data[J]. Acta Automatica Sinica, 2022, 48(9): 23. [2] SI X S, WANG W B, HU C H, et al. Remaining useful life estimation : A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14. [3] 裴洪,胡昌华,司小胜,等. 基于机器学习的设备剩余 寿命预测方法综述[J]. 机械工程学报, 2019, 55(8): 1-13. PEI Hong, HU Changhua, SI Xiaosheng, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55(8): 1-13. [4] SI X S, LI T M, ZHANG Q, et al. Prognostics for linear stochastic degrading systems with survival measurements[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 3202-3215. [5] KUNDU P, DARPE A K, KULKARNI M S. Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions[J]. Mechanical Systems and Signal Processing, 2019, 143: 106302. [6] 王泽洲,陈云翔,蔡忠义,等. 基于复合非齐次泊松过 程的不完美维修设备剩余寿命预测[J]. 机械工程学报, 2020, 56(22): 14-23. WANG Zezhou, CHEN Yunxiang, CAI Zhongyi, et al. Remaining useful lifetime prediction of the equipment subjected to imperfect maintenance based on the compound nonhomogeneous poisson process[J]. Journal of Mechanical Engineering, 2020, 56(22): 14-23. [7] 杨洋. 基于 ARIMA 和 BP 神经网络组合模型的锂电池 寿命预测[D]. 海口:海南大学, 2020. YANG Yang. Battery life prediction based on ARIMA with BPNN[D]. Haikou: Hainan University, 2020. [8] LEE S, KIM H J, KIM S B. Dynamic dispatching system using a deep denoising autoencoder for semiconductor manufacturing[J]. Applied Soft Computing, 2020, 86: 105904. [9] YU Y, HU C H, SI X S, et al. Averaged Bi-LSTM networks for RUL prognostics with non-life-cycle labeled dataset[J]. Neurocomputing, 2020, 402: 134-147. [10] PILLAI S , VADAKKEPAT P. Two stage deep learning for prognostics using multi-loss encoder and convolutional composite features[J]. Expert Systems with Applications, 2021, 171(57): 114569. [11] KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems & Signal Processing, 2018, 107: 241-265. [12] 王久健,杨绍普,刘永强,等. 一种基于空间卷积长短 时记忆神经网络的轴承剩余寿命预测方法[J]. 机械工 程学报, 2021, 57(21): 88-95. WANG Jiujian, YANG Shaopu, LIU Yongqiang, et al. A method of bearing remaining useful life estimation based on convolutional long short-term memory neural network[J]. Journal of Mechanical Engineering, 2021, 57(21): 88-95. [13] 李乃鹏,蔡潇,雷亚国,等. 一种融合多传感器数据的 数模联动机械剩余寿命预测方法[J]. 机械工程学报, 2021, 57(20): 29-37, 46. LI Naipeng , CAI Xiao , LEI Yaguo , et al. A model-data-fusion remaining useful life prediction method with multi-sensor fusion for machinery[J]. Journal of Mechanical Engineering, 2021, 57(20): 29-37, 46. [14] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊 断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104. LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104. [15] KAISER J. Dealing with missing values in data[J]. Journal of Systems Integration, 2014, 5(1): 42-51. [16] AMIRI M, JENSEN R. Missing data imputation using fuzzy-rough methods[J]. Neurocomputing, 2016, 205: 152-164. [17] PURWAR A, SINGH S K. Hybrid prediction model with missing value imputation for medical data[J]. Expert Systems with Applications, 2015, 42(13): 5621-5631. [18] KANTARDZIC M. Data mining: Concepts, models, methods, and algorithms[M]. New York: John Wiley & Sons, 2011. [19] HASTIE T, MAZUMDER R, LEE J, et al. Matrix completion and low-rank SVD via fast alternating least squares[J]. Journal of Machine Learning Research, 2014, 16(1): 3367-3402. [20] HLALELE N , NELWAMONDO F , MARWALA T. Imputation of missing data using PCA, neuro-fuzzy and genetic algorithms[C]//International Conference on Neural Information Processing. Springer, Berlin, Heidelberg, 2008: 485-492. [21] MAO Y , ZHANG J , QI H , et al. DNN-MVL : DNN-Multi-View-Learning-Based recover block missing data in a dam safety monitoring system[J]. Sensors, 2019, 19(13): 2895. [22] CHE Z, PURUSHOTHAM S, CHO K, et al. Recurrent neural networks for multivariate time series with missing values[J]. Scientific Reports, 2018, 8(1): 1-12. [23] FEDUS W, GOODFELLOW I, DAI A M. Maskgan: Better text generation via filling in the-[C/CD]// 6th International Conference on Learning Representations. Vancouver: ICLR, 2018. [24] 郝雨微. 基于深度学习的医疗时序数据补值模型研 究[D]. 长春:吉林大学, 2019. HAO Yuwei. Research on deep learning based imputation model for clinical time series[D]. Changchun : Jilin University, 2019. [25] YOON J, JORDON J, SCHAAR M. Gain: Missing data imputation using generative adversarial nets[C]// International Conference on Machine Learning. PMLR, 2018: 5689-5698. [26] SHANG C, PALMER A, SUN J, et al. VIGAN: Missing view imputation with generative adversarial networks[C]//2017 IEEE International Conference on Big Data (Big Data). New York: IEEE, 2017: 766-775. [27] LUO Y, CAI X, ZHANG Y, et al. Multivariate time series imputation with generative adversarial networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018: 1603-1614. [28] 张晟斐,李天梅,胡昌华,等. 基于深度卷积生成对抗 网络的缺失数据生成方法及其在剩余寿命预测中的应 用[J]. 航空学报, 2022, 43(8): 441-455. ZHANG Shengfei, LI Tianmei, HU Changhua, et al. Deep convolutional generative adversarial network based missing data generation method and its application in re-maining useful life prediction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 441-455. [29] GOODFELLOW I J, POUGET A J, MIRZA M, et al. Generative adversarial networks[C/CD]//International Conference on Neural Information Processing System. MIT Press, 2014. [30] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4681-4690. [31] BAI Y, ZHANG Y, DING M, et al. Sod-mtgan: Small object detection via multi-task generative adversarial network[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 206-221. [32] YU L, ZHANG W, WANG J, et al. Seqgan: Sequence generative adversarial nets with policy gradient[C/CD]// Proceedings of the AAAI Conference on Artificial Intelligence, 2017. [33] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//International Conference on Machine Learning. PMLR, 2017: 214-223. [34] ARJOVSKY M , BOTTOU L. Towards principled methods for training generative adversarial networks[J]. arXiv Preprint arXiv: 1701.04862, 2017. [35] HUSZÁR F. How (not) to train your generative model: Scheduled sampling, likelihood, adversary?[J]. arXiv: 1511.05101, 2015. [36] 胡铭菲,刘建伟,左信. 深度生成模型综述[J]. 自动化 学报, 2022, 48(1): 40-74. HU Mingfei, LIU Jianwei, ZUO Xin. Survey on deep generative model[J]. Acta Automatica Sinica, 2022, 48(1): 40-74. [37] LI Y, ZHANG T. A hybrid Hausdorff distance track correlation algorithm based on time sliding window[C]//MATEC Web of Conferences. EDP Sciences, 2021, 336: 07015. [38] 牟含笑,郑建飞,胡昌华,等. 基于 CDBN 与 BiLSTM 的多元退化设备剩余寿命预测[J]. 航空学报, 2022, 43(7): 308-319. MU Hanxiao, ZHENG Jianfei, HU Changhua, et al. Remaining useful life prediction of multivariate degradation equipment based on CDBN and Bi LSTM[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 308-319. [39] HINTON G, OSINDERO S, THE Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. [40] HINTON G. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1): 926-947. [41] BIN Y, YANG Y, SHEN F, et al. Bidirectional long-short term memory for video description[C]// Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 436-440. [42] SAXENA A, GOEBEL. C-MAPSS data set[EB/OL]. [2021-09-06]. https://www.dssz.com/2148128.html. [43] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv Preprint arXiv: 1412.6980, 2014. [44] BABU G S, ZHAO P, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//International Conference on Database Systems for Advanced Applications. Berlin: Springer, Cham, 2016: 214-228. |