[1] 吕东祯. 基于差分建模分析的锂离子电池寿命预测方 法研究[D]. 武汉:华中科技大学, 2023. LÜ Dongzhen. Research on lithium-ion battery life prediction method based on differential modeling analysis[D]. Wuhan: Huazhong University of Science and Technology, 2023. [2] ZIO Enrico. Prognostics and health management (PHM): Where are we and where do we (need to) go in theory and practice[J]. Reliability Engineering and System Safety, 2022, 218: 108119. [3] LYU Dongzhen, ZHANG Bin, ZIO Enrico, et al. The explainable uncertainty in degradation process : A discovery from non-accelerated batteries degradation experiment[C]// 48th Annual Conference of the IEEE Industrial Electronics Society, 2022, Brussels, Belgium: IEEE, 2022: 1-6. [4] LYU Dongzhen, ZHANG Bin, LIU Enhui, et al. Prognosisenabled battery SOC estimation using a closed-loop approach with consideration of SOH degradation[J]. Journal of Energy Storage, 2025, 110: 113713. [5] ZHANG Jinrui, LYU Dongzhen, XIANG Jiawei. A model-data-fusion method for real-time continuous remaining useful life prediction of lithium batteries[J]. Measurement, 2024, 238: 115312. [6] 庞哲楠,裴洪,李天梅. 考虑不完美维修的随机退化设 备剩余寿命自适应预测方法[J]. 机械工程学报, 2023, 59(2): 14-29. PANG Zhenan , PEI Hong , LI Tianmei. Adaptive prediction method for remaining useful life of stochastic degradation equipment considering imperfect maintenance[J]. Journal of Mechanical Engineering, 2023, 59(2): 14-29. [7] LI Penghua, ZHANG Zijian, XIONG Qingyu, et al. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network[J]. Journal of Power Sources, 2020, 459: 228069. [8] ZHAO Fuqiong, TIAN Zhigang, ZENG Yong. Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method[J]. IEEE Transactions on Reliability, 2013, 62(1): 146-159. [9] SEVERSON KRISTEN A, ATTIA PETER M, JIN NORMAN, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. [10] ATTIA PETER M , GROVER A , JIN N , et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature , 2020 , 578(7795): 397-402. [11] ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3(5): 447-456. [12] LU Jiahuan, XIONG Rui, TIAN Jinpeng, et al. Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning[J]. Energy Storage Materials, 2022, 50: 139-151. [13] LÜ Nawei, JIN Yang, XIONG Rui, et al. Real-time overcharge warning and early thermal runaway prediction of li-ion battery by online impedance measurement[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1929-1936. [14] 何晋,马睿飞,蔡琦琳,等. 基于递推最小二乘法的锂 电池内短路全寿命周期辨识[J]. 机械工程学报, 2022, 58(17): 96-104. HE Jin, MA Ruifei, CAI Qilin, et al. Identification of lithium battery internal short circuit over the full life cycle based on recursive least squares method[J]. Journal of Mechanical Engineering, 2022, 58(17): 96-104. [15] TIAN Jiaqiang, LIU Xinghua, LI Siqi, et al. Lithium-ion battery health estimation with real-world data for electric vehicles[J]. Energy, 2023, 270: 126855. [16] 孙誉宁,毛磊,黄伟国,等. 基于磁场的质子交换膜燃 料电池故障诊断方法[J]. 机械工程学报, 2022, 58(22): 106-114. SUN Yuning, MAO Lei, HUANG Weiguo, et al. Fault diagnosis method for proton exchange membrane fuel cells based on magnetic field[J]. Journal of Mechanical Engineering, 2022, 58(22): 106-114. [17] THELEN A, LUI Yuhui, SHEN Sheng, et al. Integrating physics-based modeling and machine learning for degradation diagnostics of lithium-ion batteries[J]. Energy Storage Materials, 2022, 50: 668-695. [18] SAXENA S, WARD L, KUBAL J, et al. A convolutional neural network model for battery capacity fade curve prediction using early life data[J]. Journal of Power Sources, 2022, 542: 231736. [19] LI Tingkai, ZHOU Zihao, THELEN A, et al. Predicting battery lifetime under varying usage conditions from early aging data[J]. Cell Reports Physical Science, 2024, 5(4): 101891. [20] YAN Wuzhao, ZHANG Bin, DOU Wanchun, et al. Low-cost adaptive lebesgue sampling particle filtering approach for real-time Li-Ion battery diagnosis and prognosis[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(4): 1601-1611. [21] ZHANG Heng, NIU Guangxing, ZHANG Bin, et al. Cost-effective lebesgue sampling long short-term memory networks for Lithium-Ion batteries diagnosis and prognosis[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1958-1967. [22] LYU Dongzhen, NIU Guangxing, LIU Enhui, et al. Time space modelling for fault diagnosis and prognosis with uncertainty management: A general theoretical formulation[J]. Reliability Engineering and System Safety, 2022, 226: 108686. [23] LYU Dongzhen, NIU Guangxing, ZHANG Bin, et al. Lebesgue-time-space-model-based diagnosis and prognosis for multiple mode systems[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1591-1603. [24] LIU Enhui, NIU Guangxing, LYU Dongzhen, et al. Low-cost adaptive LS-DEKF for SOC estimation and RDT prediction with SFP model[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-9. [25] LIU Enhui, WANG Xuan, NIU Guangxing, et al. Uncertainty management in lebesgue-sampling-based LiIon Battery SFP model for SOC estimation and RDT prediction[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 611-620. [26] LIU Enhui, WANG Xuan, NIU Guangxing, et al. Lebesgue sampling-based li-ion battery simplified first principle model for SOC estimation and RDT prediction[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9524-9534. [27] SONG Yuchen, PENG Yu, LIU Datong. Model-based health diagnosis for lithium-ion battery pack in space applications[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12375-12384. [28] KONG Jinzhen, LIU Jie, ZHU Jingzhe, et al. Review on lithium-ion battery PHM from the perspective of key PHM steps[J]. Chinese Journal of Mechanical Engineering, 2024, 37(1): 71. [29] KONG Jinzhen, YANG Fangfang, ZHANG Xi, et al. Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries[J]. Energy, 2021, 223: 120114. [30] ZHANG Chaolong, ZHAO Shaishai, HE Yigang. An integrated method of the future capacity and RUL prediction for Lithium-Ion battery pack[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2601-2613. [31] HU Xiaosong, CHE Yunhong, LIN Xianke, et al. Health prognosis for electric vehicle battery packs: A data-driven approach[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2622-2632. [32] 吕东祯,崔跃芹. 一种基于累计耗损量的充电电池寿命 预测方法和装置: 中国, CN114460484B[P]. 2024-01-09. LYU Dongzhen, CUI Yueqin. A method and device for lifetime prognosis of rechargeable batteries based on cumulative consumption indicators: China, CN114460484 B[P]. 2024-01-09 [33] 吕东祯,崔跃芹. 一种考虑运行工况的充电电池累计损 耗寿命预测方法、装置、电子设备及可读存储介质:中 国, CN114444370B[P]. 2023-10-10. LÜ Dongzhen, CUI Yueqin. A method, device, electronic equipment, and computer-readable storage medium for cumulative lifetime prognosis of rechargeable batteries considering operational conditions: China, CN114444370 B[P]. 2023-10-10. [34] 吕东祯,崔跃芹. 一种采用复合寿命指标的充电电池寿 命预测方法、装置、电子设备及可读存储介质:中国, CN116774081B[P]. 2024-02-09. LÜ Dongzhen, CUI Yueqin. A method, device, electronic equipment, and computer-readable storage medium for lifetime prognosis of rechargeable batteries using composite lifetime indicators: China, CN116774081 B[J]. 2024-02-09. [35] CUI Yueqin, LYU Dongzhen. Procédé et appareil de prédiction de durée de vie de batterie rechargeable basée sur la consommation cumulée, dispositif électronique et support de stockage lisible: PCT, Wo2023284453 a1[P]. 2023-01-19. CUI Yueqin , LYU Dongzhen. Cumulative consumption-based rechargeable battery life prediction method and apparatus, electronic device, and readable storage medium: PCT, Wo2023284453a1[P]. 2023-01-19. [36] LYU Dongzhen, CUI Yueqin. Method, device, electronic equipment and computer-readable storage medium for lifetime prognosis of rechargeable-battery based on cumulative-consumption-indicators: United States, US 20240054269[P]. 2024-02-15. [37] LYU Dongzhen, ZHANG Bin, ZIO Enrico, et al. Battery cumulative lifetime prognostics to bridge laboratory and real-life scenarios[J]. Cell Reports Physical Science, 2024, 5(9): 102164. [38] LYU Dongzhen, LIU Enhui, CHEN Huiling, et al. Transfer-driven prognosis from battery cells to packs: An application with adaptive differential model decomposition[J]. Applied Energy, 2025, 377: 124290. [39] LYU Dongzhen, NIU Guangxing, LIU Enhui, et al. Uncertainty management and differential model decomposition for fault diagnosis and prognosis[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 5235-5246. |