Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (9): 26-56.doi: 10.3901/JME.2024.09.026
Previous Articles Next Articles
DONG Zhigang1,2, WANG Zhongwang1, RAN Yichuan1, BAO Yan1,2, KANG Renke1,2
Received:
2023-05-04
Revised:
2023-11-01
Online:
2024-05-05
Published:
2024-06-18
CLC Number:
DONG Zhigang, WANG Zhongwang, RAN Yichuan, BAO Yan, KANG Renke. Advances in Ultrasonic Vibration-assisted Milling of Carbon Fiber Reinforced Ceramic Matrix Composites[J]. Journal of Mechanical Engineering, 2024, 60(9): 26-56.
[1] 沈娟,李舰. 国外高超声速技术近期研究进展[J]. 飞航导弹,2016(12):4-7. SHEN Juan,LI Jian. Recent research progress of hypersonic technology abroad[J]. Aerodynamic Missile Journal,2016(12):4-7. [2] 李大光. 世界各国高超声速武器发展现状[J]. 国防技术基础,2007(5):45-48. LI Daguang. Development status of hypersonic weapons in the world[J]. Technology Foundation of National Defence,2007(5):45-48. [3] 陈立立. 参数化高超声速巡航飞行器组合布局设计与气动优化分析[D]. 长沙:国防科技大学,2019. CHEN Lili. Combined configuration design and aerodynamic optimization analysis of hypersonic cruise vehicle with parametrization[D]. Changsha:National University of Defense Technology,2019. [4] 杜昊昱. 高超声速飞行器机动控制问题研究[D]. 西安:西北工业大学,2019. DU Haoyu. Research on maneuvering control for hypersonic Vehicle[D]. Xi’an:Northwestern Polytechnical University,2019. [5] 赵林东. 高超声速飞行器建模及巡航跟踪控制技术研究[D]. 北京:北京理工大学,2015. ZHAO Lindong. Research on modeling and tracking control technology for hypersonic vehicle during cruise phase[D]. Beijing:Beijing Institute of Technology,2015. [6] 张灿,王轶鹏,叶蕾. 国外近十年高超声速飞行器技术发展综述[J]. 战术导弹技术,2020(6):81-86. ZHANG Can,WANG Yipeng,YE Lei. Summary of the technological development of overseas hypersonics in the past ten years[J]. Tactical Missile Technology,2020(6):81-86. [7] 姜鹏,匡宇,谢小平,等. 国外高超声速飞行器研究现状及发展趋势[J]. 飞航导弹,2017(7):19-24. JIANG Peng,KUANG Yu,XIE Xiaoping,et al. Research status and development trend of hypersonic vehicle Abroad[J]. Aerodynamic Missile Journal,2017(7):19-24. [8] 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-13)[2023-02-24] http://www.gov.cn/xinwen/2021-03/13/ content_5592681.htm. [9] 章有维. 碳化物Ti2C与SiC机械性能的理论研究[D]. 武汉:武汉理工大学,2021. ZHANG Youwei. Theoretical studies on mechanical properties of Ti2C and SiC carbide ceramics[D]. Wuhan:Wuhan University of Technology,2021. [10] 刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程,2017,45(10):1-5. LIU Daxiang. One generation of new material,one generation of new type engine:development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering,2017,45(10):1-5. [11] 刘巧沐,黄顺洲,刘佳,等. 高温材料研究进展及其在航空发动机上的应用[J]. 燃气涡轮试验与研究,2014,27(4):51-56. LIU Qiaomu,HUANG Shunzhou,LIU Jia,et al. Progress and application of high temperature structural materials on aero-engine[J]. Gas Turbine Experiment and Research,2014,27(4):51-56. [12] GLORIA A,MONTANARI R,RICHETTA M,et al. Alloys for aeronautic applications:State of the art and perspectives[J]. Metals,2019,9(6):662. [13] ZHAO B,DING W.F,SHAN Z.D,et al. Collaborative manufacturing technologies of structure shape and surface integrity for complex thin-walled components of aero-engine:Status,challenge and tendency[J]. Chinese Journal of Aeronautics,2023. [14] 杜昆,陈麒好,孟宪龙,等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术,2022,43(2):113-131. DU Kun,CHEN Qihao,MENG Xianlong,et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology,2022,43(2):113-131. [15] 林左鸣. 战斗机发动机的研制现状和发展趋势[J]. 航空发动机,2006(1):1-8. LIN Zuoming. The current development and future trends of fighter engines[J]. Aeroengine,2006(1):1-8. [16] 孟令勇,高海红,郑天慧,等. 航空发动机推重比技术指标研究[J]. 燃气涡轮试验与研究,2016,29(2):57-62. MENG Lingyong,GAO Haihong,ZHENG Tianhui,et al. Research on thrust-weight ratio of aero-engine[J]. Gas Turbine Experiment and Research,2016,29(2):57-62. [17] BANSAL N,LAMON J. Ceramic matrix composites:Materials,modeling and technology[M]. John Wiley & Sons,Inc.,Hoboken,NJ,USA,2014. [18] 胡燕萍. 美国正全力攻关下一代陶瓷基复合材料[J]. 国际航空,2017(9):43-45. HU Yanping. The United States is working on the next generation of ceramic matrix composites[J]. International Aviation,2017(9):43-45. [19] DIAZ G,LUNA G,LIAO Z,et al. The new challenges of machining ceramic matrix composites (CMCs):Review of surface integrity[J]. International Journal of Machine Tools and Manufacture,2019,139:24-36. [20] AN Q,CHEN J,MING W,et al. Machining of SiC ceramic matrix composites:A review[J]. Chinese Journal of Aeronautics,2021,34(4):540-567. [21] LI L. Matrix cracking in ceramic-matrix composites[M]. Advanced Ceramics and Composites,Springer,2022:3,2662-9305. [22] WAN F,LIU R,WANG Y,et al. In situ observation of compression damage in a 3D needled-punched carbon fiber-silicon carbide ceramic matrix composite[J]. Composite Structures,2019,210:189-201. [23] WANG P,LIU F,WANG H,et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. Journal of Materials Science & Technology,2019,35(12):2743-2750. [24] 焦健,邱海鹏,王宇,等. 不同界面层体系对SiCf/SiC复合材料性能影响的研究[C]. 第17届全国复合材料学术会议(陶瓷基、C/C及金属基复合材料分论坛)论文集. 2012:17-21. JIAO Jian,QIU Haipeng,WANG Yu,et al. Mechanical properties of SiCf/SiC composites with different interphase[C]//Proceedings of the 17th National Conference on Composite Materials (Ceramic Matrix,C/C and Metal Matrix Composites Sub-forum). 2012:17-21. [25] MARSHALL D,COX B. Integral Textile Ceramic Structures[J]. Annual Review of Materials Research,2008,38(1):425-443. [26] YIN X,CHENG L,ZHANG L,et al. Fibre-reinforced multifunctional SiC matrix composite materials[J]. International Materials Reviews,2017,62(3):117-172. [27] DONG Z,ZHANG H,BAO Y,et al. Material removal behavior of ultrasonic vibration helical grinding of SiCf/SiC composites[J]. Journal of Manufacturing Science and Engineering,2022,145(5):051008. [28] 李欢. Cf/SiC复合材料超声振动锉削加工技术研究[D]. 天津:天津大学,2015. LI Huan. Study on the ultrasonic vibration filing of Cf/SiC composites[D]. Tianjin:Tianjin University,2015. [29] 刘巧沐,黄顺洲,何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程,2019,47(02):1-10. LIU Qiaomu,HUANG Shunzhou,HE Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering,2019,47(02):1-10. [30] NASLAIN R. Design,preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:An overview[J]. Composites Science and Technology,2004,64(2):155-170. [31] 梁春华. 纤维增强陶瓷基复合材料在国外航空发动机上的应用[J]. 航空制造技术,2006(3):40-45. LIANG Chunhua. Application of fiber reinforced ceramic matrix composites in foreign aero-engines[J]. Aeronautical Manufacturing Technology,2006(3):40-45. [32] 董绍明,胡建宝,张翔宇. SiC/SiC复合材料MI工艺制备技术[J]. 航空制造技术,2014(6):35-40. DONG Shaoming,HU Jianbao,ZHANG Xiangyu. Melt infiltration process for SiC/SiC composites[J]. Aeronautical Manufacturing Technology,2014(6):35-40. [33] 沙建军,代吉祥,张兆甫. 纤维增韧高温陶瓷基复合材料(Cf,SiCf/SiC)应用研究进展[J]. 航空制造技术,2017(19):16-32. SHA Jianjun,DAI Jixiang,ZHANG Zhaofu. Research and application progress of fiber-reinforced high temperature ceramic matrix composites:(Cf,SiCf/SiC) [J]. Aeronautical Manufacturing Technology,2017(19):16-32. [34] KISER J,GRADY J,BHATT R,et al. Overview of CMC (ceramic matrix composite) research at the NASA Glenn Research Center [EB/OL]. (2016-04-26). https://ntrs.nasa.gov/citations/20160014907. [35] HU M,MING W,AN Q,et al. Experimental study on milling performance of 2D C/SiC composites using polycrystalline diamond tools[J]. Ceramics International,2019,45(8):10581-10588. [36] 权宇. SiCf/SiC陶瓷基复合材料磨削试验研究[D]. 太原:中北大学,2022. QUAN Yu. Experimental Study on Grinding of SiCf/SiC Ceramic Matrix Composites[D]. Taiyuan:North University of China,2022. [37] 何涛,傅玉灿,苏宏华,等. C/SiC复合材料铣削表面完整性研究[J]. 南京航空航天大学学报,2014,46(5):701-706. HE Tao,FU Yucan,SU Honghua,et al. Study on surface integrity in milling of C/SiC composite[J]. Journal of Nanjing University of Aeronautics & Astronautics,2014,46(5):701-706. [38] 王晓博,李璐璐,赵波,等. 陶瓷基复合材料加工技术及其表面亚表面损伤机制研究进展[J]. 表面技术,2021,50(12):17-34. WANG Xiaobo,LI Lulu,ZHAO Bo,et al. Research progress on processing technology and surface and subsurface damage mechanism of ceramic matrix composites[J]. Surface Technology,2021,50(12):17-34. [39] 张孟华,庞梓玄,贾云祥,等. 纤维增强陶瓷基复合材料的加工研究进展与发展趋势[J]. 航空材料学报,2021,41(5):14-27. ZHANG Menghua,PANG Zixuan,JIA Yunxiang,et al. Research progress and development trend of fiber-reinforced ceramic matrix composites[J]. Journal of Aeronautical Materials,2021,41(5):14-27. [40] XUE F,ZHENG K,LIAO W,et al. Investigation on fiber fracture mechanism of C/SiC composites by rotary ultrasonic milling[J]. International Journal of Mechanical Sciences,2021,191:106054. [41] DONG Z,ZHANG H,KANG R,et al. Mechanical modeling of ultrasonic vibration helical grinding of SiCf/SiC composites[J]. International Journal of Mechanical Sciences,2022,234:107701. [42] LIU C,ZHANG X,GAO L,et al. Study on damage characteristics and ablation mechanism in fiber laser trepan drilling of 2.5D Cf/SiC composites[J]. The International Journal of Advanced Manufacturing Technology,2021,117(11-12):3647-3660. [43] BABBAR A,SHARMA A,JAIN V,et al. Rotary ultrasonic milling of C/SiC composites fabricated using chemical vapor infiltration and needling technique[J]. Materials Research Express,2019,6(8):85607. [44] CHEN G,XU J,WANG J,et al. Numerical and experimental study on the amplitude effect of ultrasonic vibration-assisted milling of 3D needle-punched Cf/SiC composite[J]. Ceramics International,2022,48(12):17893-17914. [45] MEI J,DIAZ O,AXINTE D. Modelling the unidirectional fibre composite milling force oscillations through capturing the influence of the stochastic fibre distributions[J]. Composite Structures,2019,226:111188. [46] ZHANG L,REN C,ZHOU C,et al. Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique[J]. Applied Surface Science,2015,357:1427-1433. [47] XUE F,ZHENG K,LIAO W,et al. Experimental investigation on fatigue property at room temperature of C/SiC composites machined by rotary ultrasonic milling[J]. Journal of the European Ceramic Society,2021,41(6):3341-3356. [48] WANG X,GAO X,ZHANG Z,et al. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace:A focused review[J]. Journal of the European Ceramic Society,2021,41(9):4671-4688. [49] 代吉祥. 碳纤维热处理对C-SiC基复合材料微观组织结构及性能影响的研究[D]. 大连:大连理工大学,2015. DAI Jixiang. Effect of thermal treatment of carbon fiber on microstructure and properties of C-SiC composites[D]. Dalian:Dalian University of Technology,2015. [50] KATOH Y,SNEAD L,HENAGER C,et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials,2014,455(1-3):387-397. [51] PADTURE N. Advanced structural ceramics in aerospace propulsion[J]. Nat. Mater.,2016,15(8):804-809. [52] CHEN Y,ZHANG L,ZHAO Y,et al. Mechanical behaviors of C/SiC pyramidal lattice core sandwich panel under in-plane compression[J]. Composite Structures,2019,214:103-113. [53] 关洪达,张涛,何新波. C/SiC陶瓷基复合材料研究与应用现状[J/OL]. [2023-02-24].材料导报,2023(16):1-19. GUAN Hongda,ZHANG Tao,HE Xinbo. Current status of the research and applications of C/SiC[J/OL]. [2023-02-24]. Materials Reports,2023(16):1-19. [54] LE V,HA N,GOO N. Advanced sandwich structures for thermal protection systems in hypersonic vehicles:A review[J]. Composites Part B:Engineering,2021,226:109301. [55] 何柏林,孙佳. 碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用[J].硅酸盐通报,2009,28(6):1197-1202,1207. HE Bolin,SUN Jia. Progress and application of carbon fibers reinforced silicon carbide ceramic matrix composites[J]. Bulletin of the Chinese Ceramic Society,2009,28(6):1197-1202,1207. [56] FERRAIUOLO M,SCIGLIANO R,RICCIO A,et al. Thermo-structural design of a Ceramic Matrix Composite wing leading edge for a re-entry vehicle[J]. Composite Structures,2019,207:264-272. [57] KRENKEL W,BERNDT F. C/C-SiC composites for space applications and advanced friction systems[J]. Materials Science and Engineering:A,2005,412(1-2):177-181. [58] KLEIN C,SCHWARZ S. Christophorus-Das Porsche Magazin[J]. Christopherus,2004,306:40-43. [59] HIROSHI H,ROLAND W,PATRICK D. Carbon/carbons and their industrial applications,ceramic matrix composites:Materials,modelling and technology[M]. Hobooken: John Wiley & Sons,Inc., 2014. [60] BIFFI R,ZACH B. Schindler 700 - the Journey to the Top,Schindler Elevators [EB/OL] (2014-08-21). http://www.schindler.com/com/internet/en/media/press-releases-english/press-releases-2006-2000/schindler-700-the-journey-to-the-top.html. [61] ENYA K,NAKAGAWA T,KANEDA H,et al. Microscopic surface structure of C/SiC composite mirrors for space cryogenic telescopes[J]. Applied Optics,2007,46(11):2049-2056. [62] CHRISTIN F. Design,fabrication,and application of thermostructural composites (TSC) like C/C,C/SiC,and SiC/SiC composites[J]. Advanced Engineering Materials,2002,4(12):903-912. [63] KANEDA H,NAITOH M,IMAI T,et al. Cryogenic optical testing of an 800 mm lightweight C/SiC composite mirror mounted on a C/SiC optical bench[J]. Applied Optics,2010,49(20):3941-3948. [64] ANSYS Inc. Ansys Granta EduPack[EB/OL]. https://www.ansys.com/zh-cn/products/materials/granta-edupack. [65] GUO M,TAO J,WU C,et al. High-speed grinding fracture mechanism of Cf/SiC composite considering interfacial strength and anisotropy[J]. Ceramics International,2022,49 (2):2600-2612. [66] ZHANG B,SUI T,LIN B,et al. Drilling process of Cf/SiC ceramic matrix composites:Cutting force modeling,machining quality and PCD tool wear analysis[J]. Journal of Materials Processing Technology,2022,304:117566. [67] 陈冰,王健,焦浩文,等.碳纤维陶瓷基复合材料的磨削加工研究进展[J].宇航材料工艺,2022,52(3):12-23. CHEN Bing,WANG Jian,JIAO Haowen,et al. Research progress on grinding of carbon fiber ceramic matrix composites[J]. Aerospace Materials& Technology,2022,52(3):12-23. [68] QU S,GONG Y,YANG Y,et al. Grinding characteristics and removal mechanism of 2.5D-needled Cf/SiC composites[J]. Ceramics International,2019,45(17):21608-21617. [69] YANG Y,QU S,GONG Y. Investigating the grinding performance of unidirectional and 2.5D-C/SiCs[J]. Ceramics International,2021,47:5123-5132. [70] QU S,GONG Y,YANG Y,et al. Investigating minimum quantity lubrication in unidirectional Cf/SiC composite grinding[J]. Ceramics International,2020,46(3):3582-3591. [71] DIAZ O,AXINTE D,BUTLER-SMITH P,et al. On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process[J]. Materials Science and Engineering:A,2019,743:1-11. [72] 尹东杨,陈晓川,鲍劲松. 基于磨料水射流的三维编织复合材料铣削技术研究[J]. 机械工程学报,2021,57(5):273-280. YIN Dongyang,CHEN Xiaochuan,BAO Jinsong,Research on milling technology of 3D braided composites based on abrasive water jet[J]. Journal of Mechanical Engineering,2021,57(5):273-280. [73] RAMULU M,JENKINS M,GUO Z. Abrasive water jet machining mechanisms in continuous-fiber ceramic composites[J]. Journal of Composites Technology and Research,2001,23(2):82-91. [74] ZHAI Z,WEI C,ZHANG Y,et al. Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser[J]. Applied Surface Science,2020,502:144131. [75] 翟兆阳,曲雅静,张延超,等. 碳纤维增强碳基复合材料加工技术研究与探讨[J]. 复合材料学报,2022,39(5):2014-2033. ZHAI Zhaoyang,QU Yajing,ZHANG Yanchao,et al. Research and discussion on processing technology of carbon fiber reinforced carbon matrix composites[J]. Acta Materiae Compositae Sinica,2022,39(5):2014-2033. [76] WANG J,MA Y,LIU Y,et al. Experimental investigation on laser ablation of C/SiC composites subjected to supersonic airflow[J]. Optics & Laser Technology,2019,113:399-406. [77] CHENG B,DING Y,LI Y,et al. Coaxial helical gas assisted laser water jet machining of SiC/SiC ceramic matrix composites[J]. Journal of Materials Processing Technology,2021,293:117067. [78] 王水旺,丁烨,程柏,等. 水导激光微加工机理与研究进展[J]. 中国激光,2022,49(10):66-85. WANG Shuiwang,DING Ye,CHENG Bai,et al. Mechanism and research advances of water-jet guided laser micromachining[J]. Chinese Journal of Lasers,2022,49(10):66-85. [79] 董志刚,马槐遥,康仁科,等. SiCf/SiC复合材料超声辅助干式侧磨砂轮磨损研究[J]. 机械工程学报,2022,58(15):134-143. DONG Zhigang,MA Huaiyao,KANG Renke,et al. Study on wear of grinding wheel in ultrasonic assisted dry side grinding of SiCf/SiC composites[J]. Journal of Mechanical Engineering,2022,58(15):134-143. [80] DING K,FU Y,SU H,et al. Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining[J]. Journal of Materials Processing Technology,2014,214(12):2900-2907. [81] WEI C,ZHAO L,HU D,et al. Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements[J]. The International Journal of Advanced Manufacturing Technology,2013,64(1-4):187-194. [82] 翟兆阳,梅雪松,王文君,等. 碳化硅陶瓷基复合材料激光刻蚀技术研究进展[J]. 中国激光,2020,47(6):24-34. ZHAI Zhaoyang,MEI Xuesong,WANG Wenjun,et al. Research advancement on laser etching technology of silicon carbide ceramic matrix composite[J]. Chinese Journal of Lasers,2020,47(6):24-34. [83] 张修峰,邵国栋,刘传成,等. 碳化硅陶瓷基复合材料常用的特种加工技术:综述[J]. 机械工程学报,2023,59(1):199-218. ZHANG Xiufeng,SHAO Guodong,LIU Chuancheng,et al. Special processing techniques commonly used for silicon carbide ceramic-based composites:Review[J]. Journal of Mechanical Engineering,2023,59(1):199-218. [84] GAO T,ZHANG Y,LI C,et al. Fiber-reinforced composites in milling and grinding:Machining bottlenecks and advanced strategies[J]. Frontiers of Mechanical Engineering,2022,17(2):24. [85] YAO L,LIU Z,SONG Q,et al. Prediction modelling of cutting force in rotary ultrasonic end grinding 2.5D woven SiO2f/SiO2 ceramic matrix composite[J]. Composite Structures,2023,304:116448. [86] ZHANG Z,YUAN S,LI Q,et al. Investigation on the machined surface quality and removal mechanism of SiCf/SiC composites in ultrasonic‑assisted grinding[J]. The International Journal of Advanced Manufacturing Technology,2022,123:4427-4445. [87] 王健健. 陶瓷基复合/硬脆材料旋转超声制孔损伤机理与抑制策略[D]. 北京:清华大学,2017. WANG Jianjian. Damage formation mechanism and suppression methods in rotary ultrasonic drilling of hard and brittle materials ceramic matrix composites[D]. Beijing:Tsinghua University,2017. [88] 丁文锋,曹洋,赵彪,等. 超声振动辅助磨削加工技术及装备研究的现状与展望[J]. 机械工程学报,2022,58(9):244-269. DING Wenfeng,CAO Yang,ZHAO Biao,et al. Research status and future prospects of ultrasonic vibration-assisted grinding technology and equipment[J]. Journal of Mechanical Engineering,2022,58(9):244-269. [89] 孙健淞,康仁科,周平,等. 蜂窝芯超声切削技术研究进展[J]. 机械工程学报,2023,59 (9):298-319. SUN Jiansong,KANG Renke,ZHOU Ping,et al. Review on ultrasonic cutting of honeycomb core[J]. Journal of Mechanical Engineering,2023,59 (9):298-319. [90] 许剑锋,黄凯,郑正鼎,等. 难加工材料场辅助超精密加工研究[J]. 中国科学:技术科学,2022,52(6):829-853. XU Jianfeng,HUANG Kai,ZHENG Zhengding,et al. Review of field-assisted ultraprecision machining difficult-to-machine materials[J]. Scientia Sinica (Technologica). 2022,52(6):829-853. [91] KUMAR M,SUBBU S,KRISHNA P,et al. Vibration assisted conventional and advanced machining:A review[C]// 12th Global Congress on Manufacturing and Management (GCMM),2014,97:1577-1586. [92] YING N,FENG J,ZHAO B. A novel 3D finite element simulation method for longitudinal-torsional ultrasonic-assisted milling[J]. The International Journal of Advanced Manufacturing Technology,2019,106(1-2):385-400. [93] DIAZ O,AXINTE D. Towards understanding the cutting and fracture mechanism in ceramic matrix composites[J]. International Journal of Machine Tools and Manufacture,2017,118-119:12-25. [94] AN Q,CAI C,CAI X,et al. Experimental investigation on the cutting mechanism and surface generation in orthogonal cutting of UD-CFRP laminates[J]. Composite Structures,2019,230:111441. [95] LI H,QIN X,HE G,et al. Investigation of chip formation and fracture toughness in orthogonal cutting of UD-CFRP[J]. The International Journal of Advanced Manufacturing Technology,2016,82(5-8):1079-1088. [96] SU Y,JIA Z,NIU B,et al. Size effect of depth of cut on chip formation mechanism in machining of CFRP[J]. Composite Structures,2017,164:316-327. [97] LI H,WANG J,WU C,et al. Damage behaviors of unidirectional CFRP in orthogonal cutting:A comparison between single- and multiple-pass strategies[J]. Composites Part B:Engineering,2020,185:107774. [98] CALZADA K,KAPOOR S,DEVOR R,et al. Modeling and interpretation of fiber orientation-based failure mechanisms in machining of carbon fiber-reinforced polymer composites[J]. Journal of Manufacturing Processes,2012,14(2):141-149. [99] XIE Z,LIU Z,WANG B,et al. Longitudinal amplitude effect on material removal mechanism of ultrasonic vibration-assisted milling 2.5D C/SiC composites[J]. Ceramics International,2021,47(22):32144-32152. [100] CHEN J,MING W,AN Q,et al. Mechanism and feasibility of ultrasonic-assisted milling to improve the machined surface quality of 2D Cf/SiC composites[J]. Ceramics International,2020,46(10):15122-15136. [101] CHEN J,AN Q,CHEN M. Transformation of fracture mechanism and damage behavior of ceramic-matrix composites during nano-scratching[J]. Composites Part A:Applied Science and Manufacturing,2020,130:105756. [102] LIU Y,LIU Z,WANG X,et al. Experimental study on cutting force and surface quality in ultrasonic vibration-assisted milling of C/SiC composites[J]. The International Journal of Advanced Manufacturing Technology,2021,112(7-8):2003-2014. [103] 冯平法,王健健,张建富,等. 硬脆材料旋转超声加工技术的研究现状及展望[J],机械工程学报,2017,53(19):3-21. FENG Pingfa,WANG Jianjian,ZHANG Jianfu,et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J]. Journal of Mechanical Engineering,2017,53(19):3-21. [104] DUAN Z,LI C,DING W,et al. Milling force model for aviation aluminum alloy:Academic insight and perspective analysis[J]. Chinese Journal of Mechanical Engineering,2021,34(1):18. [105] 蔡建德. 面向增减材复合制造的超声振动辅助铣削工艺研究[D]. 武汉:华中科技大学,2020. CAI Jiande. Research on ultrasonic vibration assisted milling process for hybrid manufacturing of additive and subtractive materials[D]. Wuhan:Huazhong University of Science and Technology,2020. [106] 冯真鹏. 超声辅助铣削镍合金铣削力和表面完整性研究[D]. 西安:西安工业大学,2021. FENG Zhenpeng. Research of milling force and surface integrity in ultrasonic assisted milling of nickel alloy[D]. Xi’an:Xi’an Technological University,2021. [107] AMIN M,YUAN S,ISRAR A,et al. Development of cutting force prediction model for vibration-assisted slot milling of carbon fiber reinforced polymers[J]. The International Journal of Advanced Manufacturing Technology,2018,94:3863-3874. [108] AMIN M,YUAN S,KHAN M,et al. Development of cutting force prediction model for carbon fiber reinforced polymers based on rotary ultrasonic slot milling[J]. Machining Science and Technology,2018,22(3):402-426. [109] 高国富,胡二娟,向道辉,等. 超声铣削C/C复合材料铣削力的理论建模[J]. 振动与冲击,2018,37(10):8-13. GAO Guofu,HU Erjuan,XIANG Daohui,et al. Theoretical modeling of the milling force of C/C composites in ultrasonic milling[J]. Journal of Vibration and Shock,2018,37(10):8-13. [110] 于云,黄立新,王丹丹. 端铣刀铣削加工铝合金铣削力试验及切屑分析[J]. 工具技术,2015,49(2):20-23. YU Yun,HUANG Lixin,WANG Dandan. Cutter force experiment and chips analysis of end milling cutter in milling aluminium alloy[J]. Tool Engineering,2015,49(2):20-23. [111] 高腾,李长河,张彦彬,等. 纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型[J]. 机械工程学报,2023,59(13):325-342. GAO Teng,LI Changhe,ZHANG Yanbin,et al. Mechanical behavior of material removal and predictive force model for CFRP grinding using nano reinforced biological lubricant[J]. Journal of Mechanical Engineering,2023,59(13):325-342. [112] KOENIGSBERGER F,SABBERWAL A. An investigation into the cutting force pulsations during milling operations[J]. International Journal of Machine Tool Design and Research,1961,1(1-2):15-33. [113] ZHENG L,CHIOU Y,LIANG S. Three dimensional cutting force analysis in end milling[J]. International Journal of Mechanical Sciences,1996,38(3):259-269. [114] WOJCIECHOWSKI S,MATUSZAK M,POWALKA B,et al. Prediction of cutting forces during micro end milling considering chip thickness accumulation[J]. International Journal of Machine Tools and Manufacture,2019,147:103466. [115] ZHANG X,YU T,ZHAO J. An analytical approach on stochastic model for cutting force prediction in milling ceramic matrix composites[J]. International Journal of Mechanical Sciences,2020,168:105314. [116] SHAN C,ZHANG M,YANG Y,et al. A dynamic cutting force model for transverse orthogonal cutting of unidirectional carbon/carbon composites considering fiber distribution[J]. Composite Structures,2020,251:112668. [117] YUAN S,FAN H,AMIN M,et al. A cutting force prediction dynamic model for side milling of ceramic matrix composites C/SiC based on rotary ultrasonic machining[J]. The International Journal of Advanced Manufacturing Technology,2016,86(1-4):37-48. [118] 李洪钢. LED封装基板超精密磨削表面材料去除机理[D]. 大连:大连理工大学,2021. LI Honggang. Research on material removal mechanism in ultra-precision grinding of LED package substrate[D]. Dalian :Dalian University of Technology,2021. [119] WANG J,ZHANG J,FENG P,et al. Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials:A critical review[J]. Ceramics International,2018,44(2):1227-1239. [120] 王明海,姜庆杰,王奔,等. C/SiC复合材料超声扭转振动铣削抑制损伤产生的机理[J]. 现代制造工程,2016(3):103-109. WANG Minghai,JIANG Qingjie,WANG Ben,et al. Mechanism of reduction of damage during ultrasonic torsional vibration milling of C/SiC composites[J]. Modern Manufacturing Engineering,2016(3):103-109. [121] 丁凯,傅玉灿,苏宏华,等. C/SiC复合材料磨削的表面/亚表面损伤[J]. 金刚石与磨料磨具工程,2014,34(4):36-40. DING Kai,FU Yucan,SU Honghua,et al. Surface/subsurface damage in C/SiC composites grinding[J]. Diamond & Abrasives Engineering,2014,34(4):36-40. [122] 刘杰,李海滨,张小彦,等. 2D-C/SiC高速深磨磨削特性及去除机制[J]. 复合材料学报,2012,29(4):113-118. LIU Jie,LI Haibin,ZHANG Xiaoyan,et al. Investigation of grinding characteristics and removal mechanisms of 2D-C/SiC in high speed deep grinding[J]. Acta Materiae Compositae Sinica,2012,29(4):113-118. [123] 陈明君,王会尧,程健,等. 熔石英光学元件加工亚表面缺陷检测及抑制技术研究进展[J]. 机械工程学报,2021,57(20):1-19. CHEN Mingjun,WANG Huiyao,CHENG Jian,et al. Progress in detection and suppression techniques for processing-induced sub-surface defects of fused silica optical elements[J]. Journal of Mechanical Engineering,2021,57(20):1-19. [124] 戴子华,朱永伟,王建彬,等. K9玻璃亚表面损伤的分步腐蚀法测量[J]. 光学精密工程,2013,21(2):287-293. DAI Zihua,ZHU Yongwei,WANG Jianbin,et al. Measurement of sub-surface damage of K9 glass by step-by-step etching method[J]. Optics and Precision Engineering,2013,21(2):287-293. [125] LV D,TANG Y,WANG H,et al. Experimental investigations on subsurface damage in rotary ultrasonic machining of glass BK7[J]. Machining Science and Technology,2013,17(3):443-463. [126] 王健,郑非非,董志刚,等. 碳化硅磨削亚表面损伤检测方法[J]. 金刚石与磨料磨具工程,2015,35(4):60-65. WANG Jian,ZHENG Feifei,DONG Zhigang,et al. Detection method of subsurface damage of silicon carbide after grinding[J]. Diamond & Abrasives Engineering,2015,35(4):60-65. [127] LI S,WANG Z,WU Y. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes[J]. Journal of Materials Processing Technology,2008,205(1-3):34-41. [128] LI C,ZHANG F,MENG B,et al. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics[J]. Ceramics International,2017,43(3):2981-2993. [129] 田爱玲,王会婷,党娟娟,等. 抛光表面的亚表层损伤检测方法研究[J]. 光子学报,2013,42(2):214-218. TIAN Ailing,WANG Huiting,DANG Juanjuan,et al. A novel method for subsurface damage measurement of optical components[J]. Acta Photonica Sinica,2013,42(2):214-218. [130] 韩雷陶瓷磨削表面加工损伤检测与实验研究[D]. 天津:天津大学,2007. HAN Lei. Examining damage experiment research of advanced ceramics surface after grinding[D]. Tianjin:Tianjin University,2007. [131] 蔡晓江. 基于复合材料各向异性的切削力热变化规律和表面质量评价试验研究[D]. 上海:上海交通大学,2014. CAI Xiaojiang. Experimental study on cutting force and heat variation and surface quality evaluation based on anisotropy of composites[D]. Shanghai:Shanghai Jiao Tong University,2014. [132] YIN J,BAI Q,ZHANG B. Methods for detection of subsurface damage:A review[J]. Chinese Journal of Mechanical Engineering,2018,31(1). [133] WANG J,LI Y,HAN J,et al. Evaluating subsurface damage in optical glasses[J]. Journal of the European Optical Society,2011,6:11001. [134] WANG C,LIU G,AN Q,et al. Occurrence and formation mechanism of surface cavity defects during orthogonal milling of CFRP laminates[J]. Composites Part B:Engineering,2017,109:10-22. [135] XIAO X,ZHENG K,LIAO W,et al. Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics[J]. International Journal of Machine Tools and Manufacture,2016,104:58-67. [136] 李赛超,郑侃,薛枫,等. 旋转超声铣削C/SiC界面结合强度研究[J]. 机械工程学报,2022,58(13):290-297. LI Saichao,ZHENG Kan,XUE Feng,et al. Study on interfacial bonding strength of C/SiC after rotary ultrasonic milling[J]. Journal of Mechanical Engineering,2022,58(13):290-297. [137] HAKULINEN M. Residual strength of ground hot isostatically pressed silicon nitride[J]. Journal of Materials Science,1985,20(3):1049-1060. [138] PFEIFFER W,HOLLSTEIN T. Influence of grinding parameters on strength-dominating near-surface characteristics of silicon nitride ceramics[J]. Journal of the European Ceramic Society,1997,17(2):487-494. [139] RICE R,MECHOLSKY J,BECHER P. The effect of grinding direction on flaw character and strength of single crystal and polycrystalline ceramics[J]. Journal of Materials Science,1981,16(4):853-862. [140] DANZER R. On the relationship between ceramic strength and the requirements for mechanical design[J]. Journal of the European Ceramic Society,2014,34(15):3435-3460. [141] RöSIGER A,GOLLER R,LANGHOF N,et al. Influence of in-plane and out-of-plane machining on the surface topography,the removal mechanism and the flexural strength of 2D C/C-SiC composites[J]. Journal of the European Ceramic Society,2021,41(5):3108-3119. [142] PRAMANIK A,ZHANG L,ARSECULARATNE J. Machining of metal matrix composites:Effect of ceramic particles on residual stress,surface roughness and chip formation[J]. International Journal of Machine Tools and Manufacture,2008,48(15):1613-1625. [143] HAN X,LIAO Z,LUNA G,et al. Towards the understanding the effect of surface integrity on the fatigue performance of silicon carbide particle reinforced aluminium matrix composites[J]. Journal of Manufacturing Processes,2022,73:518-530. [144] 邱磊. 发动机叶片表面的机器人精密磨削加工[D]. 杭州:浙江工业大学,2020. QIU Lei. Robotic precision grinding of engine blade surface[D]. Hangzhou:Zhejiang University of Technology,2020. [145] 王文三. 涡轮中气膜孔孔型及叶片气膜冷却的流动和冷却机理研究[D]. 北京:中国科学院研究生院(工程热物理研究所),2012. WANG Wensan. Investigation of flow and film cooling performance of new cooling hole geometry and film cooling of gas turbine[D]. Beijing:Graduate University of Chinese Academy of Sciences (Institute of Engineering Thermophysics),2012. [146] 朱俊. 飞秒激光加工气膜孔工艺对单晶高温合金再结晶行为及高温疲劳性能的影响研究[D]. 南昌:南昌大学,2022. ZHU Jun. Influence of femtosecond laser processing of film-cooling holes on recrystallization behavior and high temperature fatigue properties of single crystal superalloy[D]. Nanchang:Nanchang University,2022. [147] CHO J,NAJAFI K. A high-Q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding[C]// 28th IEEE International Conference on Micro Electro Mechanical Systems. Estoril: IEEE Press,2015,821. |
[1] | ZHANG Xiufeng, SHAO Guodong, LIU Chuancheng, SHI Zhenyu, ZOU Bin, WANG Jilai, ZHANG Chengpeng. Special Processing Techniques Commonly Used For Silicon Carbide Ceramic-Based Composites: Review [J]. Journal of Mechanical Engineering, 2023, 59(1): 199-218. |
[2] | WEI Xingchi, ZHAO Man, YANG Qingping, CAO Zhenzhen, MAO Jian. Milling Force Modeling of Thin-walled Parts with 5-Axis Flank Milling Considering Workpiece Deformation [J]. Journal of Mechanical Engineering, 2022, 58(7): 317-324. |
[3] | SHI Lanyu, WANG Chenguang, CHEN Jie, GUO Guoqiang, HUANG Wenbin, AN Qinglong, MING Weiwei, CHEN Ming. Material Removal Mechanism and Damage Behavior in High-speed Milling of High-temperature Alloy Honeycomb Core [J]. Journal of Mechanical Engineering, 2022, 58(23): 284-295. |
[4] | LU Shouxiang, YANG Xiuxuan, ZHANG Jianqiu, ZHOU Cong, YIN Jingfei, ZHANG Bi. Rational Discussion on Material Removal Mechanisms and Machining Damage of Hard and Brittle Materials [J]. Journal of Mechanical Engineering, 2022, 58(15): 31-45. |
[5] | GAO Xiguang, HAN Dong, SONG Yingdong, ZHANG Sheng, YU Guoqiang. Dynamic Strength Design Methods of Ceramic Matrix Composite Structures: Current Status and Future Prospects [J]. Journal of Mechanical Engineering, 2021, 57(16): 235-247. |
[6] | NI Chenbing, ZHU Lida, NING Jinsheng, YANG Zhichao, LIU Changfu. Research on the Characteristics of Cutting Force Signal and Chip in Ultrasonic Vibration-assisted Milling of Titanium Alloys [J]. Journal of Mechanical Engineering, 2019, 55(7): 207-216. |
[7] | SONG Shouxu, LIU Ming, LIU Guangfu, KE Qingdi. Theories and Design Methods for Proactive Remanufacturing of Modern Products [J]. Journal of Mechanical Engineering, 2016, 52(7): 133-141. |
[8] | SONG Shouxu;LIU Ming;KE Qingdi;LIU Guangfu. Components Optimization Design for Remanufacturing Based on Residual Strength [J]. , 2013, 49(9): 121-127. |
[9] | SUN Zhigang;XU Renhong;SONG Yingdong. Low Cycle Tensile-Tensile Fatigue Life Prediction of Ceramic Matrix Composites [J]. , 2012, 48(12): 31-36. |
[10] | ZHOU Xun;YU Xiaoli;LI Ying. INVESTATION FOR THE RESIDUAL STRENGTH DEGENERATION REGULAR OF CRANKSHAFT SERVING ON STEADY FATIGUE LOAD [J]. , 2006, 42(4): 213-217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||