Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (20): 281-303.doi: 10.3901/JME.2023.20.281
Previous Articles Next Articles
PENG Pai, GENG Keke, WANG Ziwei, LIU Zhichao, YIN Guodong
Received:
2023-06-13
Revised:
2023-08-30
Online:
2023-10-20
Published:
2023-12-08
CLC Number:
PENG Pai, GENG Keke, WANG Ziwei, LIU Zhichao, YIN Guodong. Review on Environmental Perception Methods of Autonomous Vehicles[J]. Journal of Mechanical Engineering, 2023, 59(20): 281-303.
[1] 李克强,戴一凡,李升波,等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报,2017,8(1):1-14. LI Keqiang,DAI Yifan,LI Shengbo,et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy,2017,8(1):1-14. [2] 陈虹,郭露露,宫洵,等. 智能时代的汽车控制[J]. 自动化学报,2020,46(7):1313-1332. CHEN Hong,GUO Lulu,GONG Xun,et al. Automotive control in intelligent era[J]. Acta Automatica Sinica,2020,46(7):1313-1332. [3] 熊璐,杨兴,卓桂荣,等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报,2020,56(10):127-143. XIONG Lu,YANG Xing,ZHUO Guirong,et al. Review on motion control of autonomous vehicles[J]. Journal of Mechanical Engineering,2020,56(10):127-143. [4] 彭湃,耿可可,殷国栋,等. 基于传感器融合里程计的相机与激光雷达自动重标定方法[J]. 机械工程学报,2021,57(20):206-214. PENG Pai,GENG Keke,YIN Guodong. Automatic recalibration of camera and lidar using sensor fusion odometry[J]. Journal of Mechanical Engineering,2021,57(20):206-214. [5] 江浩斌,沈峥楠,马世典,等. 基于信息融合的自动泊车系统车位智能识别[J]. 机械工程学报,2017,53(22):125-133. JIANG Haobin,SHEN Zhengnan,MA Shidian,et al. Intelligent identification of automatic parking system based on information fusion[J]. Journal of Mechanical Engineering,2017,53(22):125-133. [6] 姜武华,辛鑫,陈无畏,等. 基于信息融合的自动泊车系统多工况车位识别和决策规划[J]. 机械工程学报,2021,57(6):131-141. JIANG Wuhua,XIN Xin,CHEN Wuwei,et al. Multi-condition parking space recognition based on information fusion and decision planning of automatic parking system[J]. Journal of Mechanical Engineering,2021,57(6):131-141. [7] 王艺,蔡英凤,陈龙,等. 基于模型预测控制的智能网联汽车路径跟踪控制器设计[J]. 机械工程学报,2019,55(8):136-144. WANG Yi,CAI Yingfeng,CHEN Long,et al. Design of intelligent and connected vehicle path tracking controller based on model predictive control[J]. Journal of Mechanical Engineering,2019,55(8):136-144. [8] 章仁燮,熊璐,余卓平. 智能汽车转向轮转角主动控制[J]. 机械工程学报,2017,53(14):106-113. ZHANG Renxie,XIONG Lu,YU Zhuoping. Active steering angle control for intelligent vehicle[J]. Journal of Mechanical Engineering,2017,53(14):106-113. [9] LI F,SHI W,TU Y,et al. Automated methods for indoor point cloud preprocessing:Coordinate frame reorientation and building exterior removal[J]. Journal of Building Engineering,2023,76:107270. [10] LI X,ZHANG B,SANDER P V,et al. Blind geometric distortion correction on images through deep learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:4855-4864. [11] YAN G,LIU Z,WANG C,et al. Opencalib:A multi-sensor calibration toolbox for autonomous driving[J]. Software Impacts,2022,14:100393. [12] PERŠIĆ J,PETROVIĆ L,MARKOVIĆ I,et al. Online multi-sensor calibration based on moving object tracking[J]. Advanced Robotics,2021,35(3-4):130-140. [13] ERICKSON B J,KORFIATIS P,AKKUS Z,et al. Toolkits and libraries for deep learning[J]. Journal of Digital Imaging,2017,30:400-405. [14] KIM S,WIMMER H,KIM J. Analysis of deep learning libraries:Keras,pytorch,and mxnet[C]//2022 IEEE/ACIS 20th International Conference on Software Engineering Research,Management and Applications (SERA). IEEE,2022,54-62. [15] FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,32(9):1627-1645. [16] VIOLA P,JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR,2001,1:511-518. [17] PRASAD D K. Survey of the problem of object detection in real images[J]. International Journal of Image Processing (IJIP),2012,6(6):441-466. [18] VEDALDI A,GULSHAN V,VARMA M,et al. Multiple kernels for object detection[C]//2009 IEEE 12th International Conference on Computer Vision. IEEE,2009:606-613. [19] VIOLA P,JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001,1:511-518. [20] LIENHART R ,MAYDT J. An extended set of Haar-like features for rapid object detection[C]//International Conference on Image Processing. IEEE,2002,1:900-903. [21] DALAL N,TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,1:886-893. [22] FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,32(9):1627-1645. [23] FREUND Y,SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Proceedings of the Thirteenth International Conference on International Conference on Machine Learning. 1996,96:148-156. [24] HEARST M A,DUMAIS S T,OSUNA E,et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications,1998,13(4):18-28. [25] VIOLA P,JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision,2004,57:137-154. [26] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587. [27] UIJLINGS J R R,VAN DE SANDE K E A,GEVERS T,et al. Selective search for object recognition[J]. International Journal of Computer Vision,2013,104:154-171. [28] HE K,ZHANG X,REN S,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [29] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015:1440-1448. [30] REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [31] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:2117-2125. [32] CAI Z,VASCONCELOS N. Cascade r-cnn:Delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:6154-6162. [33] TERVEN J,CORDOVA-ESPARZA D. A comprehensive review of yolo:From yolov1 to yolov8 and beyond[J/OL]. ArXiv,[2023-08-07]. https://doi.org/10.48550/arXiv.2304.00501. [34] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788. [35] LIU W,ANGUELOV D,ERHAN D,et al. Ssd:Single shot multibox detector[C]//Computer Vision–ECCV 2016:14th European Conference,Amsterdam,The Netherlands,October 11-14,2016,Proceedings,Part I 14. Springer International Publishing,2016:21-37. [36] LAW H,TENG Y,RUSSAKOVSKY O,et al. Cornernet-lite:Efficient keypoint based object detection[J/OL]. ArXiv,[2020-09-16]. https://doi.org/10.48550/arXiv.1904.08900. [37] DUAN K,BAI S,XIE L,et al. Centernet:Keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019:6569-6578. [38] TAN M,PANG R,LE Q V. Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:10781-10790. [39] LI G,JI Z,QU X,et al. Cross-domain object detection for autonomous driving:A stepwise domain adaptative YOLO approach[J]. IEEE Transactions on Intelligent Vehicles,2022,7(3):603-615. [40] XU X,ZHAO J,LI Y,et al. Banet:A balanced atrous net improved from ssd for autonomous driving in smart transportation[J]. IEEE Sensors Journal,2020,21(22):25018-25026. [41] WANG H,XU Y,WANG Z,et al. Centernet-auto:A multi-object visual detection algorithm for autonomous driving scenes based on improved centernet[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2023,7(3):742-752. [42] CHEN L,LIN S,LU X,et al. Deep neural network based vehicle and pedestrian detection for autonomous driving:A survey[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(6):3234-3246. [43] LI B,OUYANG W,SHENG L,et al. Gs3d:An efficient 3d object detection framework for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:1019-1028. [44] CHABOT F,CHAOUCH M,RABARISOA J,et al. Deep manta:A coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:2040-2049. [45] CHEN X,KUNDU K,ZHANG Z,et al. Monocular 3D object detection for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:2147-2156. [46] MOUSAVIAN A,ANGUELOV D,FLYNN J,et al. 3D bounding box estimation using deep learning and geometry[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:7074-7082. [47] XIANG Y,CHOI W,LIN Y,et al. Data-driven 3D voxel patterns for object category recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:1903-1911. [48] XIANG Y,CHOI W,LIN Y,et al. Subcategory-aware convolutional neural networks for object proposals and detection[C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). 2017:924-933. [49] KUNDU A,LI Y,REHG J M. 3D-RCNN:Instance-level 3D object reconstruction via render-and-compare[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:3559-3568. [50] CHEN X,KUNDU K,ZHU Y,et al. 3D object proposals using stereo imagery for accurate object class detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(5):1259-1272. [51] GUPTA S,GIRSHICK R,ARBELÁEZ P,et al. Learning rich features from rgb-d images for object detection and segmentation[C]//Proceedings of European Conference on Computer Vision,2014:345-360. [52] QIN Z,WANG J,LU Y. Triangulation learning network:From monocular to stereo 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:7615-7623. [53] LI P,CHEN X,SHEN S. Stereo R-CNN based 3D object detection for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:7644-7652. [54] SIMONY M,MILZY S,AMENDEY K,et al. Complex-yolo:An euler-region-proposal for real-time 3D object detection on point clouds[C]//Proceedings of the European Conference on Computer Vision (ECCV) Workshops,Munich,Germany,September 8-14,2018,Proceedings,Part I. Springer International Publishing,2019:197-209. [55] YANG B,LUO W,URTASUN R. Pixor:Real-time 3D object detection from point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:7652-7660. [56] SHANG J,CHEN Y,NIE J. Lasernet:A method of laser stripe center extraction under non-ideal conditions[J]. Applied Optics,2023,62(13):3387-3397. [57] ZHOU Y,TUZEL O. Voxelnet:End-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:4490-4499. [58] YAN Y,MAO Y,LI B. Second:Sparsely embedded convolutional detection[J]. Sensors,2018,18(10):3337. [59] HE C,ZENG H,HUANG J,et al. Structure aware single-stage 3D object detection from point cloud[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2020:11873-11882. [60] LANG A H,VORA S,CAESAR H,et al. Pointpillars:Fast encoders for object detection from point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:12697-12705. [61] QI C R,SU H,MO K,et al. Pointnet:Deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:652-660. [62] QI C R,YI L,SU H,et al. Pointnet++:Deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:5105-5114. [63] SHI S,WANG X,LI H. Pointrcnn:3D object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:770-779. [64] CHEN X,MA H,WAN J,et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:1907-1915. [65] KU J,MOZIFIAN M,LEE J,et al. Joint 3D proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,2018:1-8. [66] SINDAGI V A,ZHOU Y,TUZEL O. Mvx-net:Multimodal voxelnet for 3D object detection[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE,2019:7276-7282. [67] ZHOU Y,TUZEL O. Voxelnet:End-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:4490-4499. [68] QI C R,LIU W,WU C,et al. Frustum pointnets for 3D object detection from RGB-D data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:918-927. [69] WANG Z,JIA K. Frustum convnet:Sliding frustums to aggregate local point-wise features for amodal 3D object detection[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,2019:1742-1749. [70] KIRILLOV A,HE K,GIRSHICK R,et al. Panoptic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:9404-9413. [71] KIRILLOV A,GIRSHICK R,HE K,et al. Panoptic feature pyramid networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:6399-6408. [72] PORZI L,BULO S R,COLOVIC A,et al. Seamless scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:8277-8286. [73] WU B,WAN A,YUE X,et al. Squeezeseg:Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,2018:1887-1893. [74] MILIOTO A,VIZZO I,BEHLEY J,et al. Rangenet++:Fast and accurate lidar semantic segmentation[C]//2019 IEEE/RSJ International Conference on Intelligent Robots And Systems (IROS). IEEE,2019:4213-4220. [75] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440. [76] RONNEBERGER O,FISCHER P,BROX T. U-net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,Proceedings,Part III 18. Springer International Publishing,2015:234-241. [77] MILLETARI F,NAVAB N,AHMADI S A. V-net:Fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision. 2016:565-571. [78] BADRINARAYANAN V,KENDALL A,CIPOLLA R. Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [79] LIN G,MILAN A,SHEN C,et al. Refinenet:Multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:1925-1934. [80] WU H,ZHANG J,HUANG K,et al. Fastfcn:Rethinking dilated convolution in the backbone for semantic segmentation[J/OL]. ArXiv,[2019-03-28]. https://doi.org/10.48550/arXiv.1903.11816. [81] ZHAO H,SHI J,QI X,et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:2881-2890. [82] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [83] YU F,KOLTUN V. Multi-scale context aggregation by dilated convolutions[J/OL]. ArXiv,[2016-04-30]. https://doi.org/10.48550/arXiv.1511.07122. [84] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010. [85] ZHENG S,LU J,ZHAO H,et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:6881-6890. [86] YASRAB R. Ecru:An encoder-decoder based convolution neural network (CNN) for road-scene understanding[J]. Journal of Imaging,2018,4(10):116-125. [87] CHEN P R,HANG H M,CHAN S W,et al. Dsnet:An efficient cnn for road scene segmentation[J]. APSIPA Transactions on Signal and Information Processing,2020,9(27):127-137. [88] ZHANG X,CHEN Z,WU Q M,et al. Fast semantic segmentation for scene perception[J]. IEEE Transactions on Industrial Informatics,2019,15(2):1183-1192. [89] PENG Y,HAN W,OU Y. Semantic segmentation model for road scene based on encoder-decoder structure[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE,2019:1927-1932. [90] CORDTS M,OMRAN M,RAMOS S,et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:3213-3223. [91] TEICHMANN M,WEBER M,ZOELLNER M,et al. Multinet:Real-time joint semantic reasoning for autonomous driving[C]//2018 IEEE Intelligent Vehicles Symposium (IV). IEEE,2018:1013-1020. [92] GEIGER A,LENZ P,STILLER C,et al. Vision meets robotics:The kitti dataset[J]. The International Journal of Robotics Research,2013,32(11):1231-1237. [93] HE K,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference On Computer Vision. 2017:2961-2969. [94] CAI Z,VASCONCELOS N. Cascade R-CNN:High quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,43(5):1483-1498. [95] HUANG Z,HUANG L,GONG Y,et al. Mask scoring R-CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:6409-6418. [96] KIRILLOV A,WU Y,HE K,et al. Pointrend:Image segmentation as rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:9799-9808. [97] BOLYA D,ZHOU C,XIAO F,et al. Yolact:Real-time instance segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019:9157-9166. [98] BOLYA D,ZHOU C,XIAO F,et al. Yolact++ better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(2):1108-1121. [99] CHEN H,SUN K,TIAN Z,et al. Blendmask:Top-down meets bottom-up for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:8573-8581. [100] YING H,HUANG Z,LIU S,et al. Embedmask:Embedding coupling for one-stage instance segmentation[J/OL]. ArXiv,[2019-12-05]. https://doi.org/10.48550/arXiv.1912.01954. [101] TIAN Z,ZHANG B,CHEN H,et al. Instance and panoptic segmentation using conditional convolutions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(1):669-680. [102] RAKAI L,SONG H,SUN S J,et al. Data association in multiple object tracking:A survey of recent techniques[J]. Expert Systems with Applications,2022,192:116300. [103] BASHAR M,ISLAM S,HUSSAIN K K,et al. Multiple object tracking in recent times:A literature review[J/OL]. ArXiv,[2022-09-11]. https://doi.org/10.48550/arXiv.2209.04796. [104] BEWLEY A,GE Z,OTT L,et al. Simple online and realtime tracking[C]//2016 IEEE International Conference on Image Processing (ICIP). IEEE,2016:3464-3468. [105] WOJKE N,BEWLEY A,PAULUS D. Simple online and realtime tracking with a deep association metric[C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE,2017:3645-3649. [106] VOIGTLAENDER P,KRAUSE M,OSEP A,et al. Mots:Multi-object tracking and segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:7942-7951. |
[1] | LIN Fen, HAO Mingbiao, WANG Tiancheng, WANG Xiaoxia. Lateral Stability Control of Autonomous Vehicle Based on Backstepping Sliding Mode Method [J]. Journal of Mechanical Engineering, 2024, 60(10): 497-506. |
[2] | LIU Cong, LIU Hui, HAN Lijin, NIE Shida. Learning-based Sliding Mode Predictive Trajectory Tracking and Stability Control for Autonomous Vehicle in Unstructured Environments [J]. Journal of Mechanical Engineering, 2024, 60(10): 399-412. |
[3] | GAO Zhenhai, YU Tong, SUN Tianjun. Review on Autonomous Vehicle Motion Planning Methods Considering Social Behavior [J]. Journal of Mechanical Engineering, 2024, 60(10): 112-128. |
[4] | LI Ying, WANG Rongxuan, WAN Chenglin, WANG Weida, YANG Chao, XU Bin. Design and Experiment Research of 3D Environmental Perception System for Split-type Flying Vehicle [J]. Journal of Mechanical Engineering, 2024, 60(10): 102-111. |
[5] | GAO Zhenhai, YU Tong, SUN Tianjun, TANG Minghong, GAO Fei, ZHAO Rui. Humanoid-driven Control Network Model for Longitudinal Autonomous Driving [J]. Journal of Mechanical Engineering, 2023, 59(18): 251-262. |
[6] | WU Xitao, WEI Chao, ZHAI Jiankun, YUAN Shihua. Study on the Optimization of Autonomous Vehicle on Path-following Considering Yaw Stability [J]. Journal of Mechanical Engineering, 2022, 58(6): 130-142. |
[7] | YANG Xin, TANG Xiao-lin, YANG Kai, XU Zheng-ping, HU Xiao-song. Research on the Motion Planning Strategy for Autonomous Vehicles in Extreme Conditions [J]. Journal of Mechanical Engineering, 2022, 58(22): 349-359. |
[8] | TAO Yong, LIU Haitao, WANG Tianmiao, HAN Dongming, ZHAO Gang. Research Progress and Industrialization Development Trend of Chinese Service Robot [J]. Journal of Mechanical Engineering, 2022, 58(18): 56-74. |
[9] | GONG Wenfeng, WANG Yuanzhe, CHEN Hui, WANG Danwei. Anomaly Diagnosis for Navigation Sensors of Unmanned Autonomous Vehicles Based on Deep Learning [J]. Journal of Mechanical Engineering, 2021, 57(24): 268-278. |
[10] | WEI Ziru, LU Yanhui, WANG Pengyu, MA Tianfei, ZHAO Shijie. Application of Grey Correlation Theory Based on CRITIC Method in Autonomous Vehicles Test and Evaluation [J]. Journal of Mechanical Engineering, 2021, 57(12): 99-108. |
[11] | XIONG Lu, YANG Xing, ZHUO Guirong, LENG Bo, ZHANG Renxie. Review on Motion Control of Autonomous Vehicles [J]. Journal of Mechanical Engineering, 2020, 56(10): 127-143. |
[12] | ZHANG Renxie, XIONG Lu, YU Zhuoping, BAI Manfei, FU Zhiqiang. Robust Trajectory Tracking Control of Autonomous Vehicles Based on Conditional Integration Method [J]. Journal of Mechanical Engineering, 2018, 54(18): 129-139. |
[13] | WANG Tianmiao;TAO Yong. Research Status and Industrialization Development Strategy of Chinese Industrial Robot [J]. , 2014, 50(9): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||