[1] 刘献礼, 李雪冰, 丁明娜, 等. 面向智能制造的刀具全生命周期智能管控技术[J]. 机械工程学报, 2021, 57(10):196-219. LIU Xianli, LI Xuebing, DING Mingna, et al. Intelligent management and control technology of cutting tool life-cycle for intelligent manufacturing[J]. Journal of Mechanical Engineering, 2021, 57(10):196-219. [2] AHMAD M I, YUSOF Y, DAUD M E, et al. Machine monitoring system:A decade in review[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108:3645-3659. [3] 李宏坤, 郝佰田, 代月帮, 等. 基于压缩感知和加噪堆栈稀疏自编码器的铣刀磨损程度识别方法研究[J]. 机械工程学报, 2019, 55(14):1-10. LI Hongkun, HAO Baitian, DAI Yuebang, et al. Wear status recognition for milling cutter based on compressed sensing and noise stacking sparse auto-encoder[J]. Journal of Mechanical Engineering, 2019, 55(14):1-10. [4] KUNTOĞLU M, SALUR E, GUPTA M K, et al. A state-of-the-art review on sensors and signal processing systems in mechanical machining processes[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116:2711-2735. [5] LIAO Yixiao, HUANG Ruyi, LI Jipu, et al. Dynamic distribution adaptation based transfer network for cross domain bearing fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2021, 34(3):52-52. [6] MOHANRAJ T, SHANKAR S, RAJASEKAR R, et al. Tool condition monitoring techniques in milling process-A review[J]. Journal of Materials Research and Technology, 2020, 9(1):1032-1042. [7] DUAN Jian, DUAN Jie, ZHOU Hongdi, et al. Multi-frequency-band deep CNN model for tool wear prediction[J]. Measurement Science and Technology, 2021, 32(6):065009. [8] XU Xingwei, WANG Jianwen, ZHONG Bingfu, et al. Deep learning-based tool wear prediction and its application for machining process using multi-scale feature fusion and channel attention mechanism[J]. Measurement, 2021, 177:109254. [9] MARTÍNEZ-ARELLANO G, TERRAZAS G, RATCHEV S. Tool wear classification using time series imaging and deep learning[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9):3647-3662. [10] CHAN T H, JIA Kui, GAO Shenghua, et al. PCANet:A simple deep learning baseline for image classification?[J]. IEEE transactions on image processing, 2015, 24(12):5017-5032. [11] WU Jiasong, QIU Shijie, KONG Youyong, et al. PCANet:An energy perspective[J]. Neurocomputing, 2018, 313:271-287. [12] WANG Tian, MIAO Zichen, CHEN Yuxin, et al. AED-Net:An abnormal event detection network[J]. Engineering, 2019, 5(5):930-939. [13] SOON F C, KHAW H Y, CHUAH J H, et al. PCANet-based convolutional neural network architecture for a vehicle model recognition system[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(2):749-759. [14] SUN Kai, ZHANG Jiangshe, YONG Hongwei, et al. FPCANet:Fisher discrimination for principal component analysis network[J]. Knowledge-Based Systems, 2019, 166:108-117. [15] QARAEI M, ABBAASI S, GHIASI-SHIRAZI K. Randomized non-linear PCA networks[J]. Information Sciences, 2021, 545:241-253. |