Journal of Mechanical Engineering ›› 2025, Vol. 61 ›› Issue (21): 18-37.doi: 10.3901/JME.2025.21.018
LI Bo1,2, YIN Yanqi1,2, WU Yehui1,2, ZHANG Yi1,2, MA Fulei3, BAI Ruiyu1,2, YAO Jiaqiang1,2, CHEN Guimin1,2
Received:2025-03-31
Revised:2025-08-15
Published:2025-12-27
CLC Number:
LI Bo, YIN Yanqi, WU Yehui, ZHANG Yi, MA Fulei, BAI Ruiyu, YAO Jiaqiang, CHEN Guimin. Research Progress of Multistable Mechanisms/Structures[J]. Journal of Mechanical Engineering, 2025, 61(21): 18-37.
| [1] HOWELL L L. 柔顺机构学[M]. 余跃庆,译. 北京:高等教育出版社,2007. HOWELL L L. Compliant mechanisms[M]. Translated by YU Yueqing. Beijing:Higher Education Press,2007. [2] HOWELL L L,MAGLEBY S P,OLSEN B M. 柔顺机构设计理论与实例[M]. 陈贵敏,于靖军,马洪波,译. 北京:高等教育出版社,2015. HOWELL L L,MAGLEBY S P,OLSEN B M. Handbook of compliant mechanisms[M]. Translated by CHEN Guimin,YU Jingjun,MA Hongbo. Beijing:Higher Education Press,2015. [3] 于靖军,郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报,2015,51(13):53-68. YU Jingjun,HAO Guangbo,CHEN Guimin,et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering,2015,51(13):53-68. [4] 邱海,方虹斌,徐鉴. 多稳态串联折纸结构的非线性动力学特性[J]. 力学学报,2019,51(4):1110-1121. QIU Hai,FANG Hongbin,XU Jian. Nonlinear dynamical characteristics of a multi-stable series origami structure[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(4):1110-1121. [5] 靳艳飞,许鹏飞,李永歌,等. 多稳态动力系统中随机共振的研究进展[J]. 力学进展,2023,53(2):357-394. JIN Yanfei,XU Pengfei,LI Yongge,et al. Stochastic resonance of multi-stable dynamical systems:A review[J]. Advances in Mechanics,2023,53(2):357-394. [6] SÖNMEZ Ü,TUTUM C C. A compliant bistable mechanism design incorporating elastica buckling beam theory and pseudo-rigid-body model[J]. Journal of Mechanical Design,2008,130(4):042304. [7] ZHAO J,JIA J Y,HE X P,et al. Post-buckling and snap-through behavior of inclined slender beams[J]. Journal of Applied Mechanics-Transactions of the ASME,2008,75(4):041020. [8] JENSEN B D,PARKINSON M B,KURABAYASHI K,et al. Design optimization of a fully-compliant bistable micro-mechanism[C]//Proceedings of the ASME 2001 International Mechanical Engineering Congress and Exposition. New York:ASME,2001:357-363. [9] QIU J,LANG J H,SLOCUM A H. A curved-beam bistable mechanism[J]. Journal of Microelectromechanical Systems,2004,13(2):137-146. [10] TISSOT-DAGUETTE L,SCHNEEGANS H,THALMANN E,et al. Analytical modeling and experimental validation of rotationally actuated pinned-pinned and fixed-pinned buckled beam bistable mechanisms[J]. Mechanism and Machine Theory,2022,174:104874. [11] MASTERS N D,HOWELL L L. A self-retracting fully compliant bistable micromechanism[J]. Journal of Microelectromechanical Systems,2003,12(3):273-280. [12] WILCOX D L,HOWELL L L. Double-tensural bistable mechanisms (DTBM) with on-chip actuation and spring-like post-bistable behavior[C]//Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Long Beach:ASME,2005:537-546. [13] WILCOX D L,HOWELL L L. Fully compliant tensural bistable micromechanisms (FTBM)[J]. Journal of Microelectromechanical Systems,2005,14(6):1223-1235. [14] CHEN G M,WU H Q,LI B,et al. Fully compliant bistable mechanisms with enhanced pitch stiffness[J]. Mechanical Systems and Signal Processing,2021,161:107926. [15] YAN L L,LU S S,LIU P B. Development of a fully compliant bistable mechanism based on circular beams with enhanced pitch stiffness[J]. Applied Sciences-Basel,2023,13(3):1642. [16] OH Y S,KOTA S. Synthesis of multistable equilibrium compliant mechanisms using combinations of bistable mechanisms[J]. Journal of Mechanical Design,2009,131(2):021002. [17] LUHARUKA R,HESKETH P J. Design of fully compliant,in-plane rotary,bistable micromechanisms for mems applications[J]. Sensors and Actuators a-Physical,2007,134(1):231-238. [18] JEONG H Y,AN S C,SEO I C,et al. 3d printing of twisting and rotational bistable structures with tuning elements[J]. Sci. Rep.,2019,9(1):324. [19] JENSEN B D,HOWELL L L,SALMON L G. Design of two-link,in-plane,bistable compliant micro-mechanisms[J]. Journal of Mechanical Design,1999,121(3):416-423. [20] JENSEN B D,HOWELL L L. Identification of compliant pseudo-rigid-body four-link mechanism configurations resulting in bistable behavior[J]. Journal of Mechanical Design,2003,125(4):701-708. [21] JENSEN B D,HOWELL L L. Bistable configurations of compliant mechanisms modeled using four links and translational joints[J]. Journal of Mechanical Design,2004,126(4):657-666. [22] ALFATTANI R,LUSK C. A lamina-emergent frustum using a bistable collapsible compliant mechanism[J]. Journal of Mechanical Design,2018,140(12):125001. [23] JIANG J Y,LIN S,WANG H C,et al. The synthesis method of series-based bistable compliant mechanisms for rigid-body guidance problem based on geometrical similarity transformation of pole maps[J]. Journal of Mechanical Design,2024,146(10):103301. [24] PENDLETON T M,JENSEN B D. Development of a tristable compliant mechanism[C]//Proceedings of the 12th IFToMM World Congress. Besançon:Springer,2007:A835. [25] CHEN G M,ATEN Q T,ZIRBEL S,et al. A tristable mechanism configuration employing orthogonal compliant mechanisms[J]. Journal of Mechanisms and Robotics-Transactions of the ASME,2010,2(1):014501. [26] HALVERSON P A,HOWELL L L,MAGLEBY S P. Tension-based multi-stable compliant rolling-contact elements[J]. Mechanism and Machine Theory,2010,45(2):147-156. [27] CHEN G M,ZHANG S Y,LI G. Multistable behaviors of compliant sarrus mechanisms[J]. Journal of Mechanisms and Robotics-Transactions of the ASME,2013,5(2):021005. [28] CHEN G M,WILCOX D L,HOWELL L L. Fully compliant double tensural tristable micromechanisms (dttm)[J]. Journal of Micromechanics and Microengineering,2009,19(2):025011. [29] CHEN G M,GOU Y J,ZHANG A M. Synthesis of compliant multistable mechanisms through use of a single bistable mechanism[J]. Journal of Mechanical Design,2011,133(8):081007. [30] HAN J S,MüLLER C,WALLRABE U,et al. Design,simulation,and fabrication of a quadstable monolithic mechanism with x- and y-directional bistable curved beams[J]. Journal of Mechanical Design,2006,129(11):1198-1203. [31] WANG D A,CHEN J H,PHAM H T. A tristable compliant micromechanism with two serially connected bistable mechanisms[J]. Mechanism and Machine Theory,2014,71:27-39. [32] OH Y. Synthesis of multistable equilibrium compliant mechanisms[D]. Ann Arbor,Michigan:University of Michigan,2008. [33] TRAN H V,NGO T H,TRAN N D K,et al. A threshold accelerometer based on a tristable mechanism[J]. Mechatronics,2018,53:39-55. [34] LI L,LI B,CHEN G. A non-transit fully compliant tristable mechanism capable of direct switching between every two stable positions[J]. Mechanical Systems and Signal Processing,2021:108597. [35] 勾燕洁,张守银,陈贵敏. 一种全柔顺六稳态机构的设计[J]. 机械工程学报,2015,51(7):61-66.GOU Yanjie,ZHANG Shouyin,CHEN Guimin. Design approach for a fully compliant sexastable mechanism[J]. Journal of Mechanical Engineering,2015,51(7):61-66. [36] 勾燕洁. 基于平面连杆构型的多稳态柔顺机构综合与设计方法[D]. 西安:西安电子科技大学,2015.GOU Yanjie. Synthesis and design approaches for compliant multistable mechanisms based on planar linkages[D]. Xi’an:Xidian University,2015. [37] HU N,BAI R Y,LI B,et al. Quadristability achieved by torsion-bending antagonistic action in a lamina emergent torsional joint[J]. Mechanism and Machine Theory,2024,204:105839. [38] LIANG H T,YANG Z D,ZHANG L W,et al. The design of spatial compliant mechanisms with distributed multi-stability based on post-buckled cylindrical compliant beams[J]. Mechanical Systems and Signal Processing,2025,228:112365. [39] HANNA B H,LUND J M,LANG R J,et al. Waterbomb base:A symmetric single-vertex bistable origami mechanism[J]. Smart Materials and Structures,2014,23(9):094009. [40] FLORES J,STEIN-MONTALVO L,ADRIAENSSENS S. Effect of crease curvature on the bistability of the origami waterbomb base[J]. Extreme Mechanics Letters,2022,57:101909. [41] LI Y,PELLEGRINO S. A theory for the design of multi-stable morphing structures[J]. Journal of the Mechanics and Physics of Solids,2020,136:103772. [42] LIU K,TACHI T,PAULINO G H. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces[J]. Nature Communications,2019,10(1):4238. [43] CHOI G P T,DUDTE L H,MAHADEVAN L. Programming shape using kirigami tessellations[J]. Nature Materials,2019,18(9):999-1004. [44] ROJAS S,RILEY K S,ARRIETA A F. Multistable bioinspired origami with reprogrammable self-folding[J]. Journal of the Royal Society Interface,2022,19(195):20220426. [45] WANG L C,SONG W L,ZHANG Y J,et al. Active reconfigurable tristable square-twist origami[J]. Advanced Functional Materials,2020,30(13):1909087. [46] YIN Y Q,LI B,HU Y Z,et al. A unified cut topology that endows programmable bistability in modular kirigami morphing structures[J]. Cell Reports Physical Science,2024,5(12):102335. [47] ZHANG Q,PAN N,LIU S,et al. Self-locking kirigami surfaces via controlled stretching[J]. Communications Engineering,2024,3(1):26. [48] CHOI G P T,DUDTE L H,MAHADEVAN L. Compact reconfigurable kirigami[J]. Physical Review Research,2021,3(4):043030. [49] PENG Y C,NILOY I,KAM M,et al. Programming bistability in geometrically perturbed mechanical metamaterials[J]. Physical Review Applied,2024,22(1):014073. [50] MEEUSSEN A S,BORDIGA G,CHANG A X,et al. Textile hinges enable extreme properties of kirigami metamaterials[J]. Advanced Functional Materials,2025,35(9):2415986. [51] KIM E H,PARK K. Design optimisation of kirigami-based auxetic metamaterials with multistability and shape-morphing capability[J]. Virtual and Physical Prototyping,2025,20(1):2450286. [52] JIANG C G,RIST F,WANG H,et al. Shape-morphing mechanical metamaterials[J]. Computer-Aided Design,2022,143:103146. [53] CHEN T,PANETTA J,SCHNAUBELT M,et al. Bistable auxetic surface structures[J]. Acm Transactions on Graphics,2021,40(4):39. [54] YIN Y Q,HU Y Z,YU Y,et al. Inverse design of multistable kirigami metamaterial via geometry-enabled shape programming and transforming[J]. Physical Review Applied,2025,23(3):034070. [55] HAO X P,XU Z,LI C Y,et al. Kirigami-design-enabled hydrogel multimorphs with application as a multistate switch[J]. Advanced Materials,2020,32(22):2000781. [56] SHAO H Q,WEI S Z,JIANG X,et al. Bioinspired electrically activated soft bistable actuators[J]. Advanced Functional Materials,2018,28(35):1802999. [57] KIM Y,ZHAO X H. Magnetic soft materials and robots[J]. Chemical Reviews,2022,122(5):5317-5364. [58] RAMACHANDRAN V,BARTLETT M D,WISSMAN J,et al. Elastic instabilities of a ferroelastomer beam for soft reconfigurable electronics[J]. Extreme Mechanics Letters,2016,9:282-290. [59] SHAHSAVAN H,AGHAKHANI A,ZENG H,et al. Bioinspired underwater locomotion of light-driven liquid crystal gels[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(10):5125-5133. [60] LI S,DENG B,GRINTHAL A,et al. Liquid-induced topological transformations of cellular microstructures[J]. Nature,2021,592(7854):386-391. [61] CHOI W Y,KIM W,CHOI J R,et al. A hyperelastic torque-reversal mechanism for soft joints with compression-responsive transient bistability[J]. Science Robotics,2025,10(98):eado7696. [62] KEPLINGER C,LI T F,BAUMGARTNER R,et al. Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation[J]. Soft Matter,2012,8(2):285-288. [63] LUO M,LIU L,LIU C,et al. A single-chamber pneumatic soft bending actuator with increased stroke-range by local electric guidance[J]. IEEE Transactions on Industrial Electronics,2021,68(9):8455-8463. [64] WANG Y X,LI Z,QIN L,et al. Dielectric elastomer fluid pump of high pressure and large volume via synergistic snap-through[J]. Journal of Applied Mechanics- Transactions of the ASME,2018,85(10):101003. [65] ZHANG J Y,OHSAKI M. Tensegrity structures:Form,stability,and symmetry[M]. Tokyo:Springer Japan,2015. [66] WANG Z J,LI K,HE Q G,et al. A light-powered ultralight tensegrity robot with high deformability and load capacity[J]. Advanced Materials,2019,31(7):1806849. [67] LITTLEFIELD Z,SUROVIK D,VESPIGNANI M,et al. Kinodynamic planning for spherical tensegrity locomotion with effective gait primitives[J]. International Journal of Robotics Research,2019,38(12-13):1442-1462. [68] BEGEY J,VEDRINES M,RENAUD P. Design of tensegrity-based manipulators:Comparison of two approaches to respect a remote center of motion constraint[J]. IEEE Robotics and Automation Letters,2020,5(2):1788-1795. [69] ZOLESI V S,GANGA P L,SCOLAMIERO L,et al. On an innovative deployment concept for large space structures[C]//42nd International Conference on Environmental Systems. San Diego:AIAA,2012:3601. [70] CHEN B X,JIANG H Z. Swimming performance of a tensegrity robotic fish[J]. Soft Robotics,2019,6(4):520-531. [71] CALLADINE C R. Buckminster fuller's “tensegrity” structures and clerk maxwell's rules for the construction of stiff frames[J]. International Journal of Solids and Structures,1978,14(2):161-172. [72] ZHANG J Y,GUEST S D,OHSAKI M,et al. Multi-stable star-shaped tensegrity structures[C]//Proceedings of the IABSE-IASS Symposium. London:IABSE-IASS,2011:P-0614. [73] MICHELETTI A. Bistable regimes in an elastic tensegrity system[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2013,469(2154):20130052. [74] MICHELETTI A,DOS SANTOS F A,GUEST S D. Prestrain-induced bistability in the design of tensegrity units for mechanical metamaterials[J]. Applied Physics Letters,2023,123(12):121702. [75] BöHM V,SUMI S,KAUFHOLD T,et al. Compliant multistable tensegrity structures[J]. Mechanism and Machine Theory,2017,115:130-148. [76] SUMI S,BÖHM V,ZIMMERMANN K. A multistable tensegrity structure with a gripper application[J]. Mechanism and Machine Theory,2017,114:204-217. [77] SCHORR P,ZENTNER L,ZIMMERMANN K,et al. Jumping locomotion system based on a multistable tensegrity structure[J]. Mechanical Systems and Signal Processing,2021,152:107384. [78] YANG H,ZHANG J,WANG J,et al. Delocalized deformation enhanced reusable energy absorption metamaterials based on bistable tensegrity[J]. Advanced Functional Materials,2024(1):2410217. [79] ZHANG J,YANG H,ZHAO Y W,et al. Adaptive,rapid,and stable trident robotic gripper:A bistable tensegrity structure implementation[J]. IEEE-ASME Transactions on Mechatronics,2025(1):1-11. [80] TODD B,PHILLIPS M,SCHULTZ S M,et al. Low-cost rfid threshold shock sensors[J]. IEEE Sensors Journal,2009,9(4):464-469. [81] ZHAO J,LIU P B,TANG Z A,et al. A wireless mems inertial switch for measuring both threshold triggering acceleration and response time[J]. IEEE Transactions on Instrumentation and Measurement,2014,63(12):3152-3161. [82] BAKER M S,POHL K R. High-g testing of mems mechanical non-volatile memory and silicon re-entry switch[R]. 2005. [83] ZHU Y,ZU J W. Enhanced buckled-beam piezoelectric energy harvesting using midpoint magnetic force[J]. Applied Physics Letters,2013,103(4):041905. [84] LIU W Q,BADEL A,FORMOSA F,et al. Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting[J]. Smart Materials and Structures,2013,22(3):035013. [85] KIM G W,KIM J. Compliant bistable mechanism for low frequency vibration energy harvester inspired by auditory hair bundle structures[J]. Smart Materials and Structures,2013,22(1):014005. [86] NGUYEN H-T,WANG D-A. Analysis of a tristable energy harvester[C]//The 22nd National Conference on Sound and Vibration. Changhua:Chinese Society of Sound and Vibration,2014. [87] WANG H Y,TANG L H. Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling[J]. Mechanical Systems and Signal Processing,2017,86:29-39. [88] VALENTINE J,ZHANG S,ZENTGRAF T,et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature,2008,455(7211):376-U332. [89] LEHMAN J,LAKES R S. Stiff,strong,zero thermal expansion lattices via material hierarchy[J]. Composite Structures,2014,107:654-663. [90] BABAEE S,SHIM J,WEAVER J C,et al. 3D soft metamaterials with negative Poisson's ratio[J]. Advanced Materials,2013,25(36):5044-5049. [91] SHAN S C,KANG S H,RANEY J R,et al. Multistable architected materials for trapping elastic strain energy[J]. Advanced Materials,2015,27(29):4296-4301. [92] CHE K K,YUAN C,WU J T,et al. Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence[J]. Journal of Applied Mechanics-Transactions of the ASME,2017,84(1):e011004. [93] RAFSANJANI A,AKBARZADEH A,PASINI D. Snapping mechanical metamaterials under tension[J]. Advanced Materials,2015,27(39):5931-5935. [94] HA C S,LAKES R S,PLESHA M E. Design,fabrication,and analysis of lattice exhibiting energy absorption via snap-through behavior[J]. Materials & Design,2018,141:426-437. [95] YIN Y Q,HU Y Z,ZHANG Y P,et al. Programmable multistable kirigami chain:Decoupling energy barrier and snapping force/displacement in a unified topology[J]. Mechanism and Machine Theory,2024,199:105691. [96] LIU Z L,FANG H B,XU J,et al. Discriminative transition sequences of origami metamaterials for mechanologic[J]. Advanced Intelligent Systems,2023,5(1):2200146. [97] SUN Y,SONG K,JU J,et al. Curved-creased origami mechanical metamaterials with programmable stabilities and stiffnesses[J]. International Journal of Mechanical Sciences,2024,262:108729. [98] ZHANG X,MA J Y,LI M Y,et al. Kirigami-based metastructures with programmable multistability[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(11):e2117649119. [99] HAGHPANAH B,SALARI-SHARIF L,POURRAJAB P,et al. Multistable shape-reconfigurable architected materials[J]. Advanced Materials,2016,28(36):7915-7920. [100] SHANG X,LIU L,RAFSANJANI A,et al. Durable bistable auxetics made of rigid solids[J]. Journal of Materials Research,2018,33(3):300-308. [101] CHI Y D,LI Y B,ZHAO Y,et al. Bistable and multistable actuators for soft robots:Structures,materials,and functionalities[J]. Advanced Materials,2022,34(19):2110384. [102] CHALVET V,HADDAB Y,LUTZ P. A microfabricated planar digital microrobot for precise positioning based on bistable modules[J]. IEEE Transactions on Robotics,2013,29(3):641-649. [103] MOHAND-OUSAID A,BOUHADDA I,BOURBON G,et al. Compact digital microrobot based on multistable modules[J]. IEEE Robotics and Automation Letters,2021,6(2):1926-1933. [104] CALMé B,RUBBERT L,HADDAB Y. Towards a discrete snake-like robot based on sma-actuated tristable modules for follow the leader control strategy[J]. IEEE Robotics and Automation Letters,2023,8(1):384-391. [105] HUSSEIN H,FARIBORZI H. Accurate sensorless multistable microsystem with a single actuator[J]. Frontiers in Mechanical Engineering-Switzerland,2022,8:825470. [106] GERSON Y,KRYLOV S,ILIC B,et al. Large displacement low voltage multistable micro actuator[C]//IEEE 21st International Conference on Micro Electro Mechanical Systems. Tucson:IEEE,2008:463-466. [107] ZHANG H,LERNER E,CHENG B,et al. Compliant bistable grippers enable passive perching for micro aerial vehicles[J]. IEEE/ASME Transactions on Mechatronics,2021,26(5):2316-2326. [108] TANG Y C,CHI Y D,SUN J F,et al. Leveraging elastic instabilities for amplified performance:Spine-inspired high-speed and high-force soft robots[J]. Science Advances,2020,6(19):eaaz6912. [109] CHEN T,BILAL O R,SHEA K,et al. Harnessing bistability for directional propulsion of soft,untethered robots[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(22):5698-5702. [110] LIN Y Q,ZHANG C,TANG W,et al. A bioinspired stress-response strategy for high-speed soft grippers[J]. Advanced Science,2021,8(21):2102539. [111] ZHANG Y C,QUAN J L,LI P C,et al. A flytrap-inspired bistable origami-based gripper for rapid active debris removal[J]. Advanced Intelligent Systems,2023,5(7):2200468. [112] CHI Y D,HONG Y Y,ZHAO Y,et al. Snapping for high-speed and high-efficient butterfly stroke-like soft swimmer[J]. Science Advances,2022,8(46): eadd3788. [113] YANG D Z,FENG M,SUN J N,et al. Soft multifunctional bistable fabric mechanism for electronics-free autonomous robots[J]. Science Advances,2025,11(5):eads8734. [114] GORISSEN B,MELANCON D,VASIOS N,et al. Inflatable soft jumper inspired by shell snapping[J]. Science Robotics,2020,5(42):eabb1967. [115] HU N,LI B,BAI R Y,et al. A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots[J]. Research,2023,6:0116. [116] YASUDA H,BUSKOHL P R,GILLMAN A,et al. Mechanical computing[J]. Nature,2021,598(7879):39-48. [117] SONG Y,PANAS R M,CHIZARI S,et al. Additively manufacturable micro-mechanical logic gates[J]. Nature Communications,2019,10(1):882. [118] LIU Z,FANG H,XU J,et al. Cellular automata inspired multistable origami metamaterials for mechanical learning[J]. Advanced Science,2023(1):2305146. [119] ZHANG H,WU J,FANG D N,et al. Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation[J]. Science Advances,2021,7(9):eabf1966. [120] MEI T,CHEN C Q. In-memory mechanical computing[J]. Nature Communications,2023,14(1):e5204. [121] ALQASIMI A,LUSK C. Shape-morphing space frame (smsf) using linear bistable elements[C]//Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Boston:ASME,2015:V05AT08A023. [122] ZANATY M,FUSSINGER T,ROGG A,et al. Programmable multistable mechanisms for safe surgical puncturing[J]. Journal of Medical Devices-Transactions of the ASME,2019,13(2):021002. [123] FU H,NAN K,BAI W,et al. Morphable 3d mesostructures and microelectronic devices by multistable buckling mechanics[J]. Nature Materials,2018,17(3):268-276. [124] BOBBERT F S L,JANBAZ S,VAN MANEN T,et al. Russian doll deployable meta-implants:Fusion of kirigami,origami,and multi-stability[J]. Materials & Design,2020,191:108624. [125] BOBBERT F S L,JANBAZ S,ZADPOOR A A. Towards deployable meta-implants[J]. Journal of Materials Chemistry B,2018,6(21):3449-3455. |
| [1] | LIU Shuhao, PEI Xiangli, WEI Anmin, WU Zhiwei, DAI Zhendong. Adaptive Terrain Control Strategy of Creeping Robot Based on Reaction Force of Motion [J]. Journal of Mechanical Engineering, 2025, 61(9): 277-291. |
| [2] | TIAN Wei, LI Pengcheng, MIAO Yunfei, LIAO Wenhe, DONG Song, MENG Dan. A New Method for High-precision In-situ Milling Edge Processing of Industrial Robots for Large Composite Thin-walled Components [J]. Journal of Mechanical Engineering, 2025, 61(7): 120-133. |
| [3] | LI Ruizhi, CHEN Yuemin, YAN Jihong. Digital Twin Modeling Method for Industrial Robots with Dynamic Trajectory Sensing and Autonomous Decision-making [J]. Journal of Mechanical Engineering, 2025, 61(7): 269-283. |
| [4] | YU Bin, HE Xiaolong, WANG Yuan, SHE Jinbo, BA Kaixian. Joint Low-level Compensation Control of Hydraulic Legged Robot Based On Force Impedance Characteristics [J]. Journal of Mechanical Engineering, 2025, 61(7): 294-300. |
| [5] | ZHANG Yuxuan, WANG Manxin, WANG Minghao, FANG Mingfeng, FENG Hutian. Dynamic Modeling and Performance Analysis of a 3-RRS Parallel Mechanism [J]. Journal of Mechanical Engineering, 2025, 61(7): 315-324. |
| [6] | WANG Pengpeng, LU Hao, YANG Zhiqiang, HOU Funing, GUO Shijie, GAN Zhongxue. Comprehensive Dynamic Friction Identification and Compensation in Joints of Collaborative SCARA Robots [J]. Journal of Mechanical Engineering, 2025, 61(7): 325-337. |
| [7] | WU Xing, LI Yangzhi, ZANG Tiegang, MENG Zhaoxu, CHEN Junzhe, WANG Chentao. Combined Path Planning Based on Voronoi Skeleton for Mobile Robots [J]. Journal of Mechanical Engineering, 2025, 61(5): 165-177. |
| [8] | QI Ruolong, WANG Jie, LI Lun, ZHAO Jibin. Research on Semi-active Suppression of Flutter in Robotic Grinding for Aero-engine Blades [J]. Journal of Mechanical Engineering, 2025, 61(5): 228-238. |
| [9] | LIU Kuo, CUI Yiming, YANG Xu, LI Mingyu, LI Kai, WANG Yongqing. Unsupervised Health Monitoring Methods for Truss Robots in Automobile Assembly Workshops [J]. Journal of Mechanical Engineering, 2025, 61(4): 44-54. |
| [10] | ZHANG Junhui, NI Xiaohao, ZONG Huaizhi, GUO Yitao, YANG Meisheng, ZHU Qixin, XU Bing. Research Status and Development Trend of Electro-hydrostatic Actuators for Robots [J]. Journal of Mechanical Engineering, 2025, 61(4): 273-289. |
| [11] | HUANG Sihan, CHEN Jianpeng, XU Zhe, YAN Yan, WANG Guoxin. Human-robot Autonomous Collaboration Method of Smart Manufacturing Systems Based on Large Language Model and Machine Vision [J]. Journal of Mechanical Engineering, 2025, 61(3): 130-141. |
| [12] | LUO Zirong, HONG Yang, JIANG Tao, LIN Zening, YANG Yun, ZHU Qunwei. Review of Micro-bionic Robots [J]. Journal of Mechanical Engineering, 2025, 61(3): 178-196. |
| [13] | LUO Xuejin, ZHANG Runshi, DENG Yingyan, MO Hao, ZHU Jiayu, LIU Xinyu, HE Yang, WANG Junchen. Dual-robot Surgical System for Collaborative Maxillofacial Osteotomy [J]. Journal of Mechanical Engineering, 2025, 61(3): 212-224. |
| [14] | QIN Yanding, FAN Jiade, ZHANG Haoqi, TIAN Mengqiang, HAN Jianda. Design and Control of a Pneumatic Artificial Muscle Actuated Exoskeleton Robot for Upper Limb Rehabilitation [J]. Journal of Mechanical Engineering, 2025, 61(3): 225-236. |
| [15] | MA Wenshuo, ZHU Haokuan, YANG Yiqing, YU Jingjun. State of the Art of Dynamic Vibration Absorption [J]. Journal of Mechanical Engineering, 2025, 61(21): 2-17. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
