Comprehensive Dynamic Friction Identification and Compensation in Joints of Collaborative SCARA Robots
WANG Pengpeng1, LU Hao2, YANG Zhiqiang1, HOU Funing1, GUO Shijie1,3, GAN Zhongxue1
1. Academy for Engineering and Technology, Fudan University, Shanghai 200433; 2. College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457; 3. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401
WANG Pengpeng, LU Hao, YANG Zhiqiang, HOU Funing, GUO Shijie, GAN Zhongxue. Comprehensive Dynamic Friction Identification and Compensation in Joints of Collaborative SCARA Robots[J]. Journal of Mechanical Engineering, 2025, 61(7): 325-337.
[1] Gao L,Yuan J,Han Z,et al. A friction model with velocity,temperature and load torque effects for collaborative industrial robot joints[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver,BC,Canada:IEEE,2017:3027-3032. [2] Wolf S,Iskandar M. Extending a dynamic friction model with nonlinear viscous and thermal dependency for a motor and harmonic drive gear[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane,Australia:IEEE,2018:783-790. [3] Bittencourt A C,Axelsson P. Modeling and experiment design for identification of wear in a robot joint under load and temperature uncertainties based on friction data[J]. IEEE/ASME Transactions on Mechatronics,2013,19(5):1694-1706. [4] Huang S,Liang W,Tan K K. Intelligent friction compensation:A review[J]. IEEE/ASME Transactions on Mechatronics,2019,24(4):1763-1774. [5] 刘丽兰,刘宏昭,吴子英,等. 机械系统中摩擦模型的研究进展[J]. 力学进展,2008,38(2):201-213. LIU Lilan,LIU Hongzhao,WU Ziying,et al. An overview of friction models in mechanical systems[J]. Advances in Mechanics,2008,38(2):201-213. [6] Armstrong-Helouvry B. Control of machines with friction[M]. Springer Science & Business Media,2012. [7] Ravanbod-Shirazi L,BesanCon-Voda A. Friction identification using the Karnopp model,applied to an electropneumatic actuator[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2003,217(2):123-138. [8] Hess D P,Soom A. Friction at a lubricated line contact operating at oscillating sliding velocities[J]. Trans. ASME J. Tribology,1990,112(1):147-152. [9] Dahl P R. A solid friction model[J]. The Aerospace Corporation,1968,18(1):1-24. [10] De Wit C C,Olsson H,Astrom K J,et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control,1995,40(3):419-425. [11] Kikuuwe R,Takesue N,Sano A,et al. Fixed-step friction simulation:from classical Coulomb model to modern continuous models[C]// 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton,Alberta,Canada:IEEE,2005:1009-1016. [12] Xu L,Yao B. Adaptive robust control of mechanical systems with non-linear dynamic friction compensation[J]. International Journal of Control,2008,81(2):167-176. [13] Kabziński J,Jastrzębski M. Practical implementation of adaptive friction compensation based on partially identified LuGre model[C]// 201419th International Conference on Methods and Models in Automation and Robotics (MMAR). Miedzyzdroje,Poland:IEEE,2014:699-704. [14] Tu X,Zhou Y F,Zhao P,et al. Modeling the static friction in a robot joint by genetically optimized BP neural network[J]. Journal of Intelligent & Robotic Systems,2019,94:29-41. [15] Hirose N,Tajima R. Modeling of rolling friction by recurrent neural network using LSTM[C]// 2017 IEEE international conference on robotics and automation (ICRA). Singapore:IEEE,2017:6471-6478. [16] Guo K,Pan Y,Yu H. Composite learning robot control with friction compensation:a neural network-based approach[J]. IEEE Transactions on Industrial Electronics,2018,66(10):7841-7851. [17] 李洋,朱立爽,刘今越,等. 基于动力学模型辨识的全臂柔顺控制[J]. 机械工程学报,2022,58(3):45-54. LI Yang,ZHU Lishuang,LIU Jinyue,et al. Dynamic model identification for whole-arm compliance control[J]. Journal of Mechanical Engineering,2022,58(3):45-54. [18] 赵哲,欧屹,孟军虎,等. 考虑转速影响的滚珠丝杠副摩擦系数计算与试验研究[J]. 摩擦学学报,2017,37(6):784-790. ZHAO Zhe,OU Yi,MENG Junhu,et al. Calculation and experimental study on friction coefficient of ball screws considering speed effect[J]. Tribology,2017,37(6):784-790. [19] 胡华君,潘博,孙京. 航天器驱动机构轴系摩擦力矩建模与分析研究[J]. 机械工程学报,2017,53(11):75-80. HU Huajun,PAN Bo,SUN Jing. Friction torque modeling of spacecraft driving mechanism shafting[J]. Journal of Mechanical Engineering,2017,53(11):75-80. [20] Hochreiter S,Schmidhuber J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [21] Brownlee J. Techniques to handle very long sequences with LSTMs [EB/OL]. [2019-08-14]. https://machinelearningmastery.com/handle-long-sequences-long-short-term-memory-recurrent-neural-networks/. [22] Bappy J H,Simons C,Nataraj L,et al. Hybrid lstm and encoder–decoder architecture for detection of image forgeries[J]. IEEE Transactions on Image Processing,2019,28(7):3286-3300. [23] Yang Z,Gjorgjevikj D,Long J,et al. Sparse autoencoder-based multi-head deep neural networks for machinery fault diagnostics with detection of novelties[J]. Chinese Journal of Mechanical Engineering,2021,34(1):54. [24] Pandiyan V,Akeddar M,Prost J,et al. Long short-term memory based semi-supervised encoder-decoder for early prediction of failures in self-lubricating bearings[J]. Friction,2023,11(1):109-124. [25] Vaswani A,Shazeer N,Parmar N,et al. Attention is all you need[J]. Advances in Neural Information Processing Systems,2017,30:5998-6008. [26] Du Y,Zhang R,Shi P,et al. ST-LaneNet:Lane line detection method based on swin transformer and LaneNet[J]. Chinese Journal of Mechanical Engineering,2024,37(1):14. [27] Zeyer A,Bahar P,Irie K,et al. A comparison of transformer and lstm encoder decoder models for ASR[C]// 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). Singapore:IEEE,2019:8-15. [28] Zhou H,Zhang S,Peng J,et al. Informer:Beyond efficient transformer for long sequence time-series forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Virtually:AAAI,2021,35(12):11106-11115.