Journal of Mechanical Engineering ›› 2025, Vol. 61 ›› Issue (3): 178-196.doi: 10.3901/JME.2025.03.178
LUO Zirong, HONG Yang, JIANG Tao, LIN Zening, YANG Yun, ZHU Qunwei
Received:
2024-02-22
Revised:
2024-10-08
Published:
2025-03-12
CLC Number:
LUO Zirong, HONG Yang, JIANG Tao, LIN Zening, YANG Yun, ZHU Qunwei. Review of Micro-bionic Robots[J]. Journal of Mechanical Engineering, 2025, 61(3): 178-196.
[1] ZHAO S,SUN D,ZHANG J,et al. Actuation and biomedical development of micro-/nanorobots-A review[J]. Materials Today Nano,2022,18:100223. [2] SCHäTZLEIN E,BLAESER A. Recent trends in bioartificial muscle engineering and their applications in cultured meat,biorobotic systems and biohybrid implants[J]. Communications Biology,2022,5:737. [3] 杨云,林泽宁,洪阳,等. 微型软体机器人能源驱动技术研究进展[J]. 国防科技大学学报,2023,45(3):76-85. YANG Yun,LIN Zening,HONG Yang,et al. Research progress of energy and actuator for micro-soft robots[J]. Journal of National University of Defense Technology,2023,45(3):76-85. [4] 陶永,刘海涛,王田苗,等. 我国服务机器人技术研究进展与产业化发展趋势[J]. 机械工程学报,2022,58(18):56-74. TAO Yong,LIU Haitao,WANG Tianmiao,et al. Research progress and industrialization development trend of chinese service robot[J]. Journal of Mechanical Engineering,2022,58(18):56-74. [5] 丁希仑,高海波,黄攀峰,等. 蓬勃发展的空间机器人技术与应用[J]. 机器人,2022,44(1):1. DING Xilun,GAO Haibo,HUANG Panfeng,et al. Booming space robotics and applications[J]. Robot,2022,44(1):1. [6] 吴其林,赵韩,陈晓飞,等. 多臂协作机器人技术与应用现状及发展趋势[J]. 机械工程学报,2023,59(15):1-16. WU Qilin,ZHAO Han,CHEN Xiaofei,et al. Review of technology,application status and development trend in multi-arm cooperative robots[J]. Journal of Mechanical Engineering,2023,59(15):1-16. [7] FEARING R S,WOOD R J. Challenges for 100 milligram flapping flight[J]. Flying Insects and Robots,2010(1):219-229. [8] KOVAC M,FUCHS M,GUIGNARD A,et al. A miniature 7g jumping robot[C]// 2008 IEEE International Conference on Robotics and Automation. Pasadena:IEEE,2008:373-378. [9] SHIN B,HA J,LEE M,et al. Hygrobot:A self-locomotive ratcheted actuator powered by environmental humidity[J]. Science Robotics,2018,3(14):eaar2629. [10] TAKAGI K,YAMAMURA M,LUO Z W,et al. Development of a rajiform swimming robot using ionic polymer artificial muscles[C]// 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing:IEEE,2006:1861-1866. [11] WEHNER M,TRUBY R L,FITZGERALD D J,et al. An integrated design and fabrication strategy for entirely soft,autonomous robots[J]. Nature,2016,536(7617):451-455. [12] WHITNEY J P,SREETHARAN P S,MA K Y. Pop-up book MEMS[J]. Journal of Micromechanics and Microengineering,2011,21(11):115021. [13] GAFFORD J B,KESNER S B,WOOD R J,et al. Microsurgical devices by Pop-Up book MEMS[C]// ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Portland:ASME,2013:13086-13092. [14] MALEKMOHAMMADI S,SEDGHI AMINABAD N,SABZI A,et al. Smart and biomimetic 3D and 4D printed composite hydrogels:Opportunities for different biomedical applications[J]. Biomedicines,2021,9(11):1537. [15] HEIDEN A,PRENINGER D,LEHNER L,et al. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators[J]. Science Robotics,2022,7(63):abk2119. [16] SACHYANI KENETH E,KAMYSHNY A,TOTARO M,et al. 3D printing materials for soft robotics[J]. Advanced Materials,2021,33(19):2003387. [17] MARAVEAS C,BAYER I S,BARTZANAS T. 4D printing:perspectives for the production of sustainable plastics for agriculture[J]. Biotechnology Advances,2022,54:107785. [18] HONG Y,LIN Z,LUO Z,et al. Development of conductive hydrogels:from design mechanisms to frontier applications[J]. Bio-Design and Manufacturing,2022,5(4):729-756. [19] KIM S,HSIAO Y H,LEE Y,et al. Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots[J]. Science Robotics,2023,8(76):eadf4278. [20] 李铁风,李国瑞,梁艺鸣,等. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报,2016,48(4):756-766. LI Tiefeng,LI Guorui,LIANG Yiming,et al. Review of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(4):756-766. [21] 田爱芬,孙悦,王茜茜,等. IPMC柔性驱动材料研究进展[J]. 现代化工,2022,42(4):48-52. TIAN Aifen,SUN Yue,WNAG Qianqian,et al. Research progress on IPMC as flexible actuating material[J]. Modern Chemical Industry,2022,42(4):48-52. [22] 雷静,葛正浩,覃兴蒙,等. 软体机器人驱动方式与制造工艺研究进展[J]. 微纳电子技术,2022,59(6):505-515. LEI Jing,GE Zhenghao,QIN Xingmeng,et al. Research progress on actuation mode and manufacturing process of soft robots[J]. Micronanoelectronic Technology,2022,59(6):505-515. [23] MA Z,ZHAO J,YU L,et al. A review of energy supply for biomachine hybrid robots[J]. Cyborg and Bionic Systems,2023,4:0053. [24] VO-DOAN T T,DUNG V T,SATO H. A cyborg insect reveals a function of a muscle in free flight[J]. Cyborg and Bionic Systems,2022,2022:9780504. [25] XIA M,WANG H,YIN Q,et al. Design and mechanics of a composite wave-driven soft robotic fin for biomimetic amphibious robot[J]. Journal of Bionic Engineering,2023,20(3):934-952. [26] AMIRHOSSEINI H,NAJAFI F. Design,prototyping and performance evaluation of a bio-inspired walking microrobot[J]. Iranian Journal of Science and Technology,Transactions of Mechanical Engineering,2020,44(3):799-811. [27] JAYARAM K,SHUM J,CASTELLANOS S,et al. Scaling down an insect-size microrobot,HAMR-VI into HAMR-Jr[C]// 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris:IEEE,2020:10305-10311. [28] HOLLAR S,FLYNN A,BELLEW C,et al. Solar powered 10 mg silicon robot[C]// The Sixteenth Annual International Conference on Micro Electro Mechanical Systems,2003. Kyoto:IEEE,2003:706-711. [29] BIRKMEYER P,PETERSON K,FEARING R S. DASH:a dynamic 16g hexapedal robot[C]// 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis:IEEE,2009:2683-2689. [30] BENA R M,YANG X,CALDERóN A A,et al. High-performance six-DOF flight control of the bee$^{++}$:an inclined-stroke-plane approach[J]. IEEE Transactions on Robotics,2023,39(2):1668-1684. [31] REN Z,KIM S,JI X,et al. A high-lift micro-aerial-robot powered by low-voltage and long-endurance dielectric elastomer actuators[J]. Advanced Materials,2022,34(7):2106757. [32] CHEN Y,LIU Y,LIU T,et al. Design and analysis of an untethered micro flapping robot which can glide on the water[J]. Science China Technological Sciences,2022,65:1749-1759. [33] CHEN Y,ZHAO H,MAO J,et al. Controlled flight of a microrobot powered by soft artificial muscles[J]. Nature,2019,575(7782):324-329. [34] WANG C,WANG S,DE CROON G,et al. Embodied airflow sensing for improved in-gust flight of flapping wing MAVs[J]. Frontiers in Robotics and AI,2022,9:1. [35] CHEN R,YUAN Z,GUO J,et al. Legless soft robots capable of rapid,continuous,and steered jumping[J]. Nat. Commun,2021,12(1):7028. [36] LOEPFE M,SCHUMACHER C M,LUSTENBERGER U B,et al. An untethered,jumping roly-poly soft robot driven by combustion[J]. Soft Robotics,2015,2(1):33-41. [37] KOVAČ M,WASSIM H,FAURIA O,et al. The EPFL jumpglider:a hybrid jumping and gliding robot with rigid or folding wings[C]// 2011 IEEE International Conference on Robotics and Biomimetics. Karon Beach:IEEE,2011:1503-1508. [38] FAN J Z,WANG S Q,YU Q G,et al. Swimming performance of the frog-inspired soft robot[J]. Soft Robot,2020,7(5):615-626. [39] ZHU J,WHITE C,WAINWRIGHT D K,et al. Tuna robotics:A high-frequency experimental platform exploring the performance space of swimming fishes[J]. Science Robotics,2019,4(34):eaax4615. [40] ZHAO Y,XUAN C,QIAN X,et al. Soft phototactic swimmer based on self-sustained hydrogel oscillator[J]. Science Robotics,2019,4(33):eaax7112. [41] REN Z Y,HU W Q,DONG X G,et al. Multi-functional soft-bodied jellyfish-like swimming[J]. Nature Communications,2019,10:12. [42] LI G R,CHEN X P,ZHOU F H,et al. Self-powered soft robot in the Mariana Trench[J]. Nature,2021,591(7848):66-71. [43] CHEN Y A,DOSHI N A,GOLDBERG B A,et al. Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot[J]. Nature Communications,2018,9(1):2495. [44] GOLDBERG B,ZUFFEREY R,DOSHI N,et al. Power and control autonomy for high-speed locomotion with an insect-scale legged robot[J]. IEEE Robotics and Automation Letters,2018,3(2):987-993. [45] DE RIVAZ S D,GOLDBERG B,DOSHI N,et al. Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion[J]. Science Robotics,2018,3(25):eaau3038. [46] 中国科学院沈阳自动化研究所. 微型爬行机器人[EB/OL]. 2023-12-12]. http://rlab.sia.cas.cn/sptp/lu/202102/t20210203_624624.html. Shenyang Institute of Automation Chinese Academy of Sciences. Micro crawling robot[EB/OL]. 2023-12-12]. http://rlab.sia.cas.cn/sptp/lu/202102/t20210203_624624.html. [47] LIN D J,WANG J Y,JIAO N I,et al. A flexible magnetically controlled continuum robot steering in the enlarged effective workspace with constraints for retrograde intrarenal surgery[J]. Advanced Intelligent Systems,2021,3(10):1. [48] GE Z,DAI L,ZHAO J,et al. Bubble-based microrobots enable digital assembly of heterogeneous microtissue modules[J]. Biofabrication,2022,14(2):025023. [49] DAI L,GE Z,JIAO N,et al. 2D to 3D manipulation and assembly of microstructures using optothermally generated surface bubble microrobots[J]. Small,2019,15(45):1902815. [50] MA K Y,CHIRARATTANANON P,FULLER S B,et al. Controlled flight of a biologically inspired,insect-scale robot[J]. Science,2013,340(6132):603-607. [51] GRAULE M A,CHIRARATTANANON P,FULLER S B,et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J]. Science,2016,352(6288):978-982. [52] CHEN Y,WANG H,HELBLING E,et al. A biologically inspired,flapping-wing,hybrid aerial-aquatic microrobot[J]. Science Robotics,2017,2(11):eaao5619. [53] JAFFERIS N T,HELBLING E F,KARPELSON M,et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle[J]. Nature,2019,570(7762):491-495. [54] LOK M,HELBLING E F,ZHANG X,et al. A low mass power electronics unit to drive piezoelectric actuators for flying microrobots[J]. IEEE Transactions on Power Electronics,2018,33(4):3180-3191. [55] OLEJNIK D A,MUIJRES F T,KARáSEK M,et al. Flying into the wind:Insects and bio-inspired micro-air-vehicles with a wing-stroke dihedral steer passively into wind-gusts[J]. Frontiers in Robotics and AI,2022,9:1. [56] HALDANE D W,YIM J K,FEARING R S. Repetitive extreme-acceleration (14-g) spatial jumping with Salto-1P[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver:IEEE,2017:3345-3351. [57] YIM J K,FEARING R S. Precision jumping limits from flight-phase control in salto-1P[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid:IEEE,2018:2229-2236. [58] YIM J K,SINGH B R P,WANG E K,et al. Precision robotic leaping and landing using stance-phase balance[J]. IEEE Robotics and Automation Letters,2020,5(2):3422-3429. [59] AUBIN C A,HEISSER R H,PERETZ O,et al. Powerful,soft combustion actuators for insect-scale robots[J]. Science,2023,381:1212-1217. [60] CHENG T,LI G,LIANG Y,et al. Untethered soft robotic jellyfish[J]. Smart Materials and Structures,2019,28(1):015019. [61] KRUTH J P. Material incress manufacturing by rapid prototyping techniques[J]. CIRP Annals,1991,40(2):603-614. [62] BAILEY S A,CHAM J G,CUTKOSKY M R,et al. Comparing the locomotion dynamics of the cockroach and a shape deposition manufactured biomimetic hexapod[C]// International Symposium on Experimental Robotics. Springer,2000:239-248. [63] CHU W S,LEE K T,SONG S H,et al. Review of biomimetic underwater robots using smart actuators[J]. International Journal of Precision Engineering and Manufacturing,2012,13(7):1281-1292. [64] LI M,PEI Y,CAO Y,et al. Flexible strain sensors:from devices to array integration[J]. Flexible and Printed Electronics,2021,6(4):043002. [65] RANZANI T,RUSSO S,BARTLETT N W,et al. Increasing the dimensionality of soft microstructures through injection-induced self-folding[J]. Advanced Materials,2018,30(38):1802739. [66] WALLIN T J,PIKUL J,SHEPHERD R F. 3D printing of soft robotic systems[J]. Nature Reviews Materials,2018,3(6):84-100. [67] WU C,XU F,WANG H,et al. Manufacturing technologies of polymer composites&mdash:A review[J]. Polymers,2023,15(3):712. [68] WANG F,LUO F,HUANG Y,et al. 4D printing via multispeed fused deposition modeling[J]. Advanced Materials Technologies,2023,8(2):2201383. [69] DOUILLET C,NICODEME M,HERMANT L,et al. From local to global matrix organization by fibroblasts:A 4D laser-assisted bioprinting approach[J]. Biofabrication,2022,14(2):025006. [70] WOOD R,SHANG J,COMBES S,et al. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles[J]. Bioinspiration & Biomimetics,2009,4(3):036002(1-6). [71] WOOD R J. Liftoff of a 60 mg flapping-wing MAV[M]. Harvard Universiy Press,2007. [72] TEMEL F Z,DOSHI N,KOH J S,et al. The milliDelta:A high-bandwidth,high-precision,millimeter-scale Delta robot[J]. Science Robotics,2018,3(14):eaar3018. [73] 邢志广,林俊,赵建文. 人工肌肉驱动器研究进展综述[J]. 机械工程学报,2021,57(9):1-11. XING Guangzhi,LIN Jun,ZHAO Jianwen,et al. Overview of the artificial muscle actuators[J]. Journal of Mechanical Engineering,2021,57(9):1-11. [74] 李梦月,杨佳,焦念东,等. 微纳米机器人的最新研究进展综述[J]. 机器人,2022,44(6):732-749. LI Mengyue,YANG Jia,JIAO Niandong,et al. Review on the latest research progress of micro-nano robots[J]. Robot,2022,44(6):732-749. [75] DOSHI N,GOLDBERG B,SAHAI R,et al. Model driven design for flexure-based Microrobots[C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg:IEEE,2015:4119-4126. [76] ZHENG M,WANG D,ZHU D,et al. Piezo climber:versatile and self-transitional climbing soft robot with bioinspired highly directional footpads[J]. Advanced Functional Materials,2023,33(44):2308384. [77] HOOVER A M,STELTZ E,FEARING R S. RoACH:An autonomous 2.4 g crawling hexapod robot[C]// 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice:IEEE,2008:26-33. [78] HAOMACHAI W,SHAO D,WANG W,et al. Lateral undulation of the bendable body of a gecko-inspired robot for energy-efficient inclined surface climbing[J]. IEEE Robotics and Automation Letters,2021,6(4):7917-7924. [79] 徐殿国,白凤强,张相军,等. 形状记忆合金执行器研究综述[J]. 电工技术学报,2022,37(20):5144-5163. XU Dianguo,BAI Fengqiang,ZHANG Xiangjun,et al. Review on shape memory alloy actuators[J]. Transactions of China Electrotechnical Society,2022,37(20):5144-5163. [80] TAN X,CLARK A J,MCKINLEY P K. Evolutionary multiobjective design of a flexible caudal fin for robotic fish[J]. Bioinspiration & biomimetics,2015,10(6):065006. [81] YANG X,CHANG L,PÉREZ-ARANCIBIA N O. An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle[J]. Science Robotics,2020,5(45):eaba0015. [82] QIU J,JI A,ZHU K,et al. A gecko-inspired robot with a flexible spine driven by shape memory alloy springs[J]. Soft Robotics,2023,10(4):713-723. [83] 毛婷,彭瀚旻,查泽琳,等. 形状记忆合金驱动的连续跳跃柔性机器人[J]. 振动、测试与诊断,2021,41(3):447-452. MAO Ting,PENG Hanmin,ZHA Zelin,et al. Continuous jumping soft robot driven by shape memory alloy[J]. Journal of Vibration,Measurement & Diagnosis,2021,41(3):447-452. [84] HAO Y,ZHANG S,FANG B,et al. A review of smart materials for the boost of soft actuators,soft sensors,and robotics applications[J]. Chinese Journal of Mechanical Engineering,2022,35(1):1. [85] 林晓鹏,肖友华,管奕琛,等. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展,2023,42(9):4770-4782. LIN Xiaopeng,XIAO Youhua,GUAN Yichen,et al. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC)[J]. Chemical Industry and Engineering Progress,2023,42(9):4770-4782. [86] RONG Q,LEI W,LIU M. Conductive hydrogels as smart materials for flexible electronic devices[J]. Chemistry,2018,24(64):16930-16943. [87] HONG Y,LIN Z,YANG Y,et al. Biocompatible conductive hydrogels:Applications in the field of biomedicine[J]. International Journal of Molecular Sciences,2022,23(9):4578. [88] LI T F,LI G R,LIANG Y M,et al. Fast-moving soft electronic fish[J]. Science Advances,2017,3(4):7. [89] LIN Z,JIANG T,YANG Y,et al. Matrigel-fibrinogen-thrombin hydrogels with high bioactivity for the fabrication of self-propelled in vitro muscular tissues[J]. Applied Materials Today,2024,39:1. [90] CAO J,QIN L,LIU J,et al. Untethered soft robot capable of stable locomotion using soft electrostatic actuators[J]. Extreme Mechanics Letters,2018,21:9-16. [91] JI X,LIU X,CACUCCIOLO V,et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators[J]. Science Robotics,2019,4(37):eaaz6451. [92] WANG X,DAI L,JIAO N,et al. Superhydrophobic photothermal graphene composites and their functional applications in microrobots swimming at the air/water interface[J]. Chemical Engineering Journal,2021,422:129394. [93] HONG J W,YOON C,JO K,et al. Recent advances in recording and modulation technologies for next- generation neural interfaces[J]. iScience,2021,24(12):103550. [94] AMAR A B,KOUKI A B,CAO H. Power approaches for implantable medical devices[J]. Sensors,2015,15(11):28889-28914. [95] KAKEI Y,KATAYAMA S,LEE S,et al. Integration of body-mounted ultrasoft organic solar cell on cyborg insects with intact mobility[J]. NPJ Flexible Electronics,2022,6(1):78. [96] BOZKURT A,LOBATON E,SICHITIU M. A biobotic distributed sensor network for under-rubble search and rescue[J]. Computer,2016,49(5):38-46. [97] SHOJI K,AKIYAMA Y,SUZUKI M,et al. Biofuel cell backpacked insect and its application to wireless sensing[J]. Biosensors and Bioelectronics,2016,78:390-395. [98] LEE D,JEONG S H,YUN S,et al. Totally implantable enzymatic biofuel cell and brain stimulator operating in bird through wireless communication[J]. Biosensors and Bioelectronics,2021,171:112746. [99] GHAFOURI N,KIM H,ATASHBAR M Z,et al. A micro thermoelectric energy scavenger for a hybrid insect[C]// SENSORS,2008 IEEE. Lecce:IEEE,2008:1249-1252. [100] WOIAS P,SCHULE F,BÄUMKE E,et al. Thermal energy harvesting from wildlife[J]. Journal of Physics:Conference Series,2014,557(1):012084. [101] ZHANG H,WU X,PAN Y,et al. A novel vibration energy harvester based on eccentric semicircular rotor for self-powered applications in wildlife monitoring[J]. Energy Conversion and Management,2021,247:114674. [102] SHAFER M W,MACCURDY R,SHIPLEY J R,et al. The case for energy harvesting on wildlife in flight[J]. Smart Materials and Structures,2015,24(2):025031. [103] TRAN-NGOC P T,LE D L,CHONG B S,et al. Intelligent insect-computer hybrid robot:Installing innate obstacle negotiation and onboard human detection onto cyborg insect[J]. Advanced Intelligent Systems,2023,5(5):2200319. [104] RASAKATLA S,TENMA W,SUZUKI T,et al. CameraRoach:A wiFi- and camera-enabled cyborg cockroach for search and rescue[J]. Journal of Robotics and Mechatronics,2022,34:149-158. [105] ARIYANTO M,REFAT C M M,HIRAO K,et al. Movement optimization for a cyborg cockroach in a bounded space incorporating machine learning[J]. Cyborg Bionic Syst,2023,4:0012. [106] LIU P,MA S,LIU S,et al. Omnidirectional jump control of a locust-computer hybrid robot[J]. Soft Robot,2023,10(1):40-51. [107] MA S,LIU P,LIU S,et al. Launching of a cyborg locust via co-contraction control of hindleg muscles[J]. IEEE Transactions on Robotics,2022,38(4):2208-2219. [108] LI Y,WU J,SATO H. Feedback control-based navigation of a flying insect-machine hybrid robot[J]. Soft Robotics,2018,5(4):365-374. [109] VO DOAN T T,TAN M Y W,BUI X H,et al. An ultralightweight and living legged robot[J]. Soft Robotics,2017,5(1):17-23. [110] SATO H,BERRY C,PEERI Y,et al. Remote radio control of insect flight[J]. Frontiers in Integrative Neuroscience,2009,3. [111] NGUYEN H D,DUNG V T,SATO H,et al. Efficient autonomous navigation for terrestrial insect-machine hybrid systems[J]. Sensors and Actuators B:Chemical,2023,376:132988. [112] NGUYEN H D,TAN P Z,SATO H,et al. Sideways walking control of a cyborg beetle[J]. IEEE Transactions on Medical Robotics and Bionics,2020,2(3):331-337. [113] SATO H,VO DOAN T T,KOLEV S,et al. Deciphering the role of a coleopteran steering muscle via free flight stimulation[J]. Current Biology,2015,25(6):798-803. [114] VO DOAN T T,SATO H. Insect-machine hybrid system:Remote radio control of a freely flying beetle (Mercynorrhina torquata)[J]. Journal of Visualized Experiments,2016,(115):54260. [115] KIM C H,CHOI B,KIM D G,et al. Remote navigation of turtle by controlling instinct behavior via human brain-computer interface[J]. Journal of Bionic Engineering,2016,13(3):491-503. [116] XU N W,TOWNSEND J P,COSTELLO J H,et al. Developing biohybrid robotic jellyfish (Aurelia aurita) for free-swimming tests in the laboratory and in the field[J]. Bio-protocol,2021,11(7):e3974. [117] LATIF T,WHITMIRE E,NOVAK T,et al. Towards fenceless boundaries for solar powered insect biobots[C]// 201436th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago:IEEE,2014:1670-1673. [118] REISSMAN T,GARCIA E. An ultra-lightweight multi-source power harvesting system for insect cyborg sentinels[C]// ASME 2008 Conference on Smart Materials,Adaptive Structures and Intelligent Systems. Ellicott:ASME,2008:711-718. [119] SHOJI K,MORISHIMA K,AKIYAMA Y,et al. Autonomous environmental monitoring by self-powered biohybrid robot[C]// 2016 IEEE International Conference on Mechatronics and Automation. Harbin:IEEE,2016:629-634. [120] RASMUSSEN M,RITZMANN R E,LEE I,et al. An implantable biofuel cell for a live insect[J]. Journal of the American Chemical Society,2012,134(3):1458-1460. [121] HUANG S H,CHEN W H,LIN Y C. A self-powered glucose biosensor operated underwater to monitor physiological status of free-swimming fish[J]. Energies. 2019,12(10):1827. [122] HALáMKOVá L,HALáMEK J,BOCHAROVA V,et al. Implanted biofuel cell operating in a living snail[J]. Journal of the American Chemical Society,2012,134(11):5040-5043. [123] SZCZUPAK A,HALáMEK J,HALáMKOVá L,et al. Living battery - biofuel cells operating in vivo in clams[J]. Energy & Environmental Science,2012,5(10):8891-8895. [124] ZEBDA A,COSNIER S,ALCARAZ J P,et al. Single glucose biofuel cells implanted in rats power electronic devices[J]. Scientific Reports,2013,3(1):1516. [125] MIYAKE T,HANEDA K,NAGAI N,et al. Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms[J]. Energy & Environmental Science,2011,4(12):5008-5012. [126] MACVITTIE K,HALÁMEK J,HALÁMKOVÁ L,et al. From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells[J]. Energy & Environmental Science,2013,6(1):81-86. [127] SCHWEFEL J,RITZMANN R E,LEE I N,et al. Wireless communication by an autonomous self-powered cyborg insect[J]. Journal of The Electrochemical Society,2015,161(13):H3113. [128] AKTAKKA E E,KIM H,NAJAFI K. Energy scavenging from insect flight[J]. Journal of Micromechanics and Microengineering,2011,21:095016. [129] NODA T,OKUYAMA J,KAWABATA Y,et al. Harvesting energy from the oscillation of aquatic animals:Testing a vibration-powered generator for bio-logging data logger systems[J]. Journal of Advanced Marine Science and Technology Society,2014,20:37-43. [130] SHAFER M W,MACCURDY R,GARCIA E. Testing of vibrational energy harvesting on flying birds[C]// ASME 2013 Conference on Smart Materials,Adaptive Structures and Intelligent Systems. Snowbird:ASME,2013. [131] DALER L,MINTCHEV S,STEFANINI C,et al. A bioinspired multi-modal flying and walking robot[J]. Bioinspir Biomim,2015,10(1):016005. [132] SHEARWOOD J,ALDABASHI N,ELTOKHY A,et al. C-band telemetry of insect pollinators using a miniature transmitter and a self-piloted drone[J]. IEEE Transactions on Microwave Theory and Techniques,2021,69(1):938-946. [133] FU S,WEI F,YIN C,et al. Biomimetic soft micro-swimmers:From actuation mechanisms to applications[J]. Biomed Microdevices,2021,23(1):6. |
[1] | MA Chuanzhen, LIU Henan, CHEN Mingjun, TIAN Jinchuan, ZHOU Zihan, SUN Jiangang, QIN Biao. Research Progress on Key Property and Manufacturing Technology of Hemispherical Resonator [J]. Journal of Mechanical Engineering, 2024, 60(3): 354-372. |
[2] | SUN Zhilin, WANG Kaifeng, GU Peihua. Review and Prospect for Design Theory and Methodology Research [J]. Journal of Mechanical Engineering, 2024, 60(13): 2-20. |
[3] | XIONG Dingyu, QU Piao, ZHU Zhongqi, GONG Zhiyuan, LIU Changyong, WANG Pei, LAO Changshi, YUAN Jingkun, CAO Jiwei, CHEN Zhangwei. Research Progress on Extrusion and Jetting-based Ceramic Additive Manufacturing Technologies [J]. Journal of Mechanical Engineering, 2021, 57(17): 253-262. |
[4] | WANG Yongqing, DENG Jianhui, LI Te, LIU Kuo, LIU Haibo, MA Shugen. Review of Research on 3D Printing Manufacturing Technology of Soft Robots [J]. Journal of Mechanical Engineering, 2021, 57(15): 186-198. |
[5] | LI Ming, SHI Honggeng, LAI Yinan, HUANG Xun, LI Hongwei, ZHAO Chunzhang, YE Xin. Review on Management at Joint Fund for Aerospace Advanced Manufacturing Technology Research [J]. Journal of Mechanical Engineering, 2018, 54(9): 1-8. |
[6] | XIE Haibo;HONG Xiao;ZHAO Yang;LIU Zhibin;YANG Huayong. Application of Hydro-viscous Driver in TBM Cutter-head Driving Technology [J]. , 2014, 50(21): 69-75. |
[7] | YANG Shuzi;WU Bo;LI Bin. FURTHER DISCUSSION ON TRENDS IN THE DEVELOPMENT OF ADVANCED MANUFACTURING TECHNOLOGY [J]. , 2006, 42(1): 1-5. |
[8] | Wu Xuncheng;Chen Zhiheng;Hu Ning. ACTIVE CONTROL MANUFACTURING TECHNOLOGY FOR THE POINT- CONTACT TOOTH SURFACES OF SPIRAL BEVEL AND HYPOID GEARS [J]. , 2005, 41(10): 97-101. |
[9] | Jia Zhenyuan;Wang Fuji;Guo Dongming. FUNCTIONAL MATERIAL DRIVING MICROACTUATOR AND ITS KEY TECHNOLOGY [J]. , 2003, 39(11): 61-67. |
[10] | Yang Shuzi;Wu Bo. TRENDS IN THE DEVELOPMENT OF ADVANCED MANUFACTURING TECHNOLOGY [J]. , 2003, 39(10): 73-78. |
[11] | Wang Xiankui. BROAD MANUFACTURING THEORY [J]. , 2003, 39(10): 86-94. |
[12] | Wang Xiankui. HISTORY REVIEW AND CHANCE AND CHALLENGE FOR MANUFACTURING TECHNOLOGY [J]. , 2002, 38(8): 1-8. |
[13] | Lei Yuanzhong;Ding Han;Luo Jianbin. ON KEY SCIENTIFIC AND TECHNOLOGICAL PROBLEMS IN COMPUTER MANUFACTURING [J]. , 2002, 38(11): 1-6. |
[14] | Luo Yan;Zhang Yongqing;Zhou Xionghui;Zhou Xinjian. RESEARCH OF STEP-BASED INJECTION MOLD MODEL UNDER INTEGR AINTEGRATION ENVIRONMENT [J]. , 1998, 34(2): 66-72. |
[15] | Lu Yongxiang. VIEW ON THE DEVELOPMENT OF MANUFACTURING TECHNOLOGY FOR CHINA [J]. , 1995, 31(6): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||