[1] 黄庆学. 高品质钢铁板带轧制关键装备与技术研究进 展[J]. 机械工程学报, 2023, 59(20): 34-63. HUANG Qingxue. Research progress on key equipment and technology of high quality steel plate and strip rolling[J]. Journal of Mechanical Engineering, 2023, 59(20): 34-63. [2] WANG D C, LIU H M, LIU J. Research and development trend of shape control for cold rolling strip[J]. Chinese Journal of Mechanical Engineering , 2017 , 30(5): 1248-1261. [3] 彭艳,石宝东,刘才溢,等. 板带轧制装备-工艺-产品 质量综合控制融合发展综述[J]. 机械工程学报, 2023, 59(20): 96-118. PENG Yan, SHI Baodong, LIU Caiyi, et al. Review of the integrated development of strip rolling equipment-process-product quality control[J]. Journal of Mechanical Engineering, 2023, 59(20): 96-118. [4] ZENG W, WANG J, ZHANG Y, et al. DDPG-based continuous thickness and tension coupling control for the unsteady cold rolling process[J]. International Journal of Advanced Manufacturing Technology, 2022, 120(11-12): 7277-7292. [5] HU Z, WEI Z, SUN H, et al. Optimization of metal rolling control using soft computing approaches: A review[J]. Archives of Computational Methods in Engineering, 2021, 28(2): 405-421. [6] 任忠凯,郭雄伟,范婉婉,等. 精密极薄带轧制理论研 究进展及展望[J]. 机械工程学报, 2020, 56(12): 73-84. REN Zhongkai, GUO Xiongwei, FAN Wanwan, et al. Research progress and prospects of precision ultra-thin strip rolling theory[J]. Journal of Mechanical Engineering, 2020, 56(12): 73-84. [7] BU H, YAN Z, ZHANG D. A novel approach to improve the computing accuracy of rolling force and forward slip[J]. Ironmaking and Steelmaking, 2019, 46(3): 269-276. [8] 王志军. 热轧前滑模型的研究[J]. 钢铁研究, 2014, 42(1): 30-32. WANG Zhijun. Study on forward slip model in hot rolling process[J]. Research on Iron and Steel, 2014, 42(1): 30-32. [9] 赵会平,潘刚. BLAND-ford 前滑模型在宝钢冷轧模型 系统中的应用[J]. 宝钢技术, 2009(4): 63-66, 70. ZHAO Huiping , PAN Gang. Applications of the BLAND-ford forward slip model in Baosteel cold mill’s model system[J]. Baosteel Technology, 2009(4): 63-66, 70. [10] FUJⅡ Y, MAEDA Y, UTSUNOMIYA H. Development of on-line model of forward slip on tandem cold strip mill[J]. Journal of the Iron and Steel Institute of Japan, 2021, 107(9): 732-740. [11] 朱光明,杜凤山,孙登月,等. 有限元法修正冷轧带钢 工作辊接触压扁公式[J]. 塑性工程学报, 2003(2): 39-41. ZHU Guangming, DU Fengshan, SUN Dengyue, et al. Finite element method modification of the contact flattening formula for cold rolled strip steel work rolls[J]. Journal of Plasticity Engineering, 2003(2): 39-41. [12] LI L, XIE H, LIU T, et al. Effects of rolling force on strip shape during tandem cold rolling using a novel multistand finite element model[J]. Steel Research International, 2022, 93(2): 2100359. [13] 周富强,曹建国,张杰,等. 冷连轧机轧制力的影响因 素[J]. 机械工程学报, 2007(10): 94-97. ZHOU Fuqiang, CAO Jianguo, ZHANG Jie, et al. Influencing factors of rolling force in cold tandem rolling mill[J]. Journal of Mechanical Engineering, 2007(10): 94-97. [14] 周富强,曹建国,张杰,等. 基于神经网络的冷连轧机 轧制力预报模型[J]. 中南大学学报(自然科学版), 2006(6): 1155-1160. ZHOU Fuqiang, CAO Jianguo, ZHANG Jie, et al. Prediction model of rolling force for tandem cold rolling mill based on neural networks and mathematical models[J]. Journal of Central South University(Science and Technology), 2006(6): 1155-1160. [15] XIA J S, KHAJE KHABAZ M, PATRA I, et al. Using feed-forward perceptron artificial neural network (ANN) model to determine the rolling force, power and slip of the tandem cold rolling[J]. ISA Transactions, 2023, 132: 353-363. [16] ESENDA K, ORTA A H, KAYABAI I, et al. Prediction of reversible cold rolling process parameters with artificial neural network and regression models for industrial applications: A case study[C]//12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME 2018, July 18, 2018-July 20, 2018. Naples, Italy: Elsevier B.V., 2019: 644-648. [17] 张欣,陈树宗,李旭,等. 基于遗传算法的不锈钢冷连 轧机轧制规程优化[J]. 钢铁, 2023, 58(7): 99-105. ZHANG Xin, CHEN Shuzong, LI Xu, et al. Optimization of tandem cold rolling schedule for stainless steel strip based on genetic algorithm[J]. Iron & Steel, 2023, 58(7): 99-105. [18] 魏立新,翟博豪,赵志伟,等. 基于半监督深度网络的 冷连轧轧制力预报[J]. 塑性工程学报, 2020, 27(11): 70-76. WEI Lixin, ZHAI Bohao, ZHAO Zhiwei, et al. Prediction of cold continuous rolling force based on semi-supervised deep network[J]. Journal of Plasticity Engineering, 2020, 27(11): 70-76. [19] 王家琪,刘晓,张增强,等. 基于非圆弧理论的精密极薄 带轧制力快速预测[J]. 钢铁, 2023, 58(10): 85-91, 130. WANG Jiaqi, LIU Xiao, ZHANG Zengqiang, et al. Rapid prediction of rolling force of precision thin strip based on non circular arc theory[J]. Iron and Steel, 2023, 58(10): 85-91, 130. [20] FLECK N A. Cold rolling of foil[J]. Proceedings of the Institution of Mechanical Engineers : B , Journal of Engineering Manufacture, 1992, 206(2): 119. [21] LE H R, SUTCLIFFE M P F. A robust model for rolling of thin strip and foil[J]. International Journal of Mechanical Sciences, 2001, 43(6): 1405-1419. [22] LANGLANDS T A M, MCELWAIN D L S. A modified hertzian foil rolling model: Approximations based on perturbation methods[J]. International Journal of Mechanical Sciences, 2002, 44(8): 1715-1730. [23] LIU Y, LEE W H. Mathematical model for the thin strip cold rolling and temper rolling process with the influence function method[J]. ISIJ International, 2005, 45(8): 1173-1178. [24] REN Z, XIAO H, LIU X, et al. Experimental and theoretical analysis of roll flattening in the deformation zone for ultra-thin strip rolling[J]. Ironmaking & Steelmaking, 2018, 45(9): 805-812. [25] LIU X, XIAO H. Theoretical and experimental study on the producible rolling thickness in ultra-thin strip rolling[J]. Journal of Materials Processing Technology, 2020, 278: 116537. [26] 吴吉展,魏沛堂,吴少杰,等. 航空齿轮钢滚动接触疲 劳性能预测与表面完整性优化[J]. 机械工程学报, 2024, 60(8): 81-93. WU Jizhan, WEI Peitang, WU Shaojie, et al. Rolling contact fatigue performance prediction and surface integrity optimization of aviation gear steel[J]. Journal of Mechanical Engineering, 2024, 60(8): 81-93. |