Surface Topography Prediction in Micro-milling Processing of Aerostatic Spindle under High-speed Effects
SHI Jianghai1,2, FENG Xin1,2, CAO Hongrui1,2
1. National and Local Joint Engineering Research Center of Equipment Operation Safety and Intelligent Monitoring, Xi'an Jiaotong University, Xi'an 710049; 2. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049
SHI Jianghai, FENG Xin, CAO Hongrui. Surface Topography Prediction in Micro-milling Processing of Aerostatic Spindle under High-speed Effects[J]. Journal of Mechanical Engineering, 2025, 61(3): 259-271.
[1] 袁巨龙,张飞虎,戴一帆,等. 超精密加工领域科学技术发展研究[J]. 机械工程学报,2010,46(15):161-177. YUAN Julong,ZHANG Feihu,DAI Yifan,et al. Development research of science and technologies in ultra-precision machining field[J]. Journal of Mechanical Engineering,2010,46(15):161-177. [2] 梁迎春,陈国达,孙雅洲,等. 超精密机床研究现状与展望[J]. 哈尔滨工业大学学报,2014,46(5):28-39. LIANG Yingchun,CHEN Guoda,SUN Yazhou,et al. Research status and outlook of ultra-precision machine tool[J]. Journal of Harbin Institute of Technology,2014,46(5):28-39. [3] SHI Jianghai,JIN Xiaoliang,CAO Hongrui. Chatter stability analysis in micro-milling with aerostatic spindle considering speed effect[J]. Mechanical Systems and Signal Processing,2022,169:108620. [4] 田璐,韩旭炤,高峰,等. 微细铣削技术研究综述[J]. 机械强度,2019,41(3):618-624. TIAN Lu,HAN Xuzhao,GAO Feng,et al. Review of micro-milling technology[J]. Journal of Mechanical Sthength,2019,41(3):618-624. [5] 李雅青,赵培轶,姜彬,等. 铣削钛合金加工表面形貌特征参数的预测[J]. 工具技术,2020,54(1):41-46. LI Yaqing,ZHAO Peiyi,JIANG Bin,et al. Prediction study on surface topography distribution of milling titanium alloy[J]. Tool engineering,2020,54(1):41-46. [6] 张昱,张昌明. AerMet100超高强度钢铣削表面质量与参数优化[J]. 兵器材料科学与工程,2020,43(5):5-10. ZHANG Yu,ZHANG Changming. Milling surface quality and parameter optimization of AerMet100 ultra-high strength steel[J]. Ordnance Material Science and Engineering,2020,43(5):5-10. [7] TORRES A,AMINI C,CUADRADO N,et al. Experimental validation of ball burnishing numerical simulation on ball-end milled martensitic stainless-steel considering friction and the initial surface topography[J]. Journal of Materials Research and Technology,2023,22:3352-3361. [8] WOJCIECHOWSKI S. Estimation of minimum uncut chip thickness during precision and micro-machining processes of various materials-a critical review[J]. Materials,2021,15(1):59. [9] ZHANG Wei,LI Kangning,WANG Weiran,et al. Analysis of high-speed milling surface topography and prediction of wear resistance[J]. Materials,2022,15(5):1707. [10] ZHANG Wei,LI Kangning,ZHANG Lei,et al. High- speed milling surface topography dimensional analysis and wear prediction[J]. International Journal of Advanced Manufacturing Technology,2021,15(4):409-416. [11] 潘丽美,钱炜,刘金,等. 基于切削振动的铣削表面形貌仿真与试验研究[J]. 机械强度,2022,44(1):59-67. PAN Limei,QIAN Wei,LIU Jin,et al. Simulation and experimental research on milling surface topography based on cutting vibration[J]. Journal of Mechanical Strength,2022,44(1):59-67. [12] ZHOU Ruihu,CHEN Qinlin. An analytical prediction model of surface topography generated in 4-axis milling process[J]. International Journal of Advanced Manufacturing Technology,2021,115(9-10):3289-3299. [13] XIE Hailong,WANG Qinghui,NI Jianlong,et al. A GPU-based prediction and simulation method of grinding surface topography for belt grinding process[J]. International Journal of Advanced Manufacturing Technology,2020,106(11-12):5175-5186. [14] MARCIN P,ŁUKASZ Z,ANTUN S,et al. Modelling of the face-milling process by toroidal cutter[J]. Materials,2023,16(7):2829. [15] PERARD T,VALIORGUE F,Mehmet C,et al. Experimental investigation on surface integrity in a face milling operation[J]. Procedia CIRP,2022,108:400-405. [16] AMIGO F,URBIKAIN G,LÓPEZ L,et al. Prediction of cutting forces including tool wear in high-feed turning of nimonic® C-263 superalloy: a geometric distortion-based model[J]. Measurement,2023,211:112580. [17] SERGE B,LAGOUGE K,TARTIBU,I. Prediction analysis of surface roughness of aluminum al6061 in end milling CNC machine using soft computing techniques[J]. Applied Sciences,2023,13(7):4147. [18] CHEN Huiqun,JIN Fenpin. Surface topography prediction model for free-form surface milling under a dynamic system response[C]// 2nd International Conference on Advanced Materials and Intelligent Manufacturing,Nanning,China,2021,2044(1):012140. [19] CHEN Wanqun,XIE Wenkun,HUO Dehuo,et al. A novel 3D surface generation model for micro milling based on homogeneous matrix transformation and dynamic regenerative effect[J]. International Journal of Mechanical Sciences,2018,144:146-157. [20] HUO Dehuo,CHEN Wanqun,TENG Xiangyu,et al. Modeling the influence of tool deflection on cutting force and surface generation in micro-milling[J]. Micromachines,2017,8(6):188. [21] ZHANG Zhaoqing,SHI Kaining,HUANG Xinchun,et al. Development of a probabilistic algorithm of surface residual materials on Si3N4 ceramics under longitudinal torsional ultrasonic grinding[J]. Ceramics International,2022,48(9):12028-12037. [22] 王仁伟,张松,葛人杰,等. 改进的球头铣刀加工表面形貌建模方法[J]. 计算机集成制造系统,2021,27(4):973-980. WANG Renwei,ZHANG Song,GE Renjie,et al. Modified machined surface topography modeling in ball- end milling process[J]. Computer Integrated Manufacturing Systems,2021,27(4):973-980. [23] SHI Jianghai,CAO Hongrui,MAROJU N,et al. Dynamic modeling of aerostatic spindle with shaft tilt deformation[J]. Journal of Manufacturing Science and Engineering,2020,142(2):021006. [24] GENTA G. Dynamics of rotating systems[M]. New York:Springer Science & Business Media,2005. [25] CAO Y,ALTINTAS Y. A general method for the modeling of spindle-bearing systems[J]. Journal of Mechanical Design,2004,126(6):1089-1104. [26] SHI Jianghai,CAO Hongrui,CHEN Xuefeng. Effect of angular misalignment on the dynamic characteristics of externally pressurized air journal bearing[J]. Proceedings of the Institution of Mechanical Engineers,Part J: Journal of Engineering Tribology,2020,234(2):205-228. [27] ALTINTAŞ Y,BUDAK E. Analytical prediction of stability lobes in milling[J]. CIRP Annals,1995,44(1):357-362. [28] SHI Jianghai,CAO Hongrui,JIN Xiaoliang. Dynamics of 5-DOF aerostatic spindle with time-varying coefficients of air bearing[J]. Mechanical Systems and Signal Processing,2022,172:109005. [29] CAO Hongrui,LI Bing,HE Zhengjia. Chatter stability of milling with speed-varying dynamics of spindles[J]. International Journal of Machine Tools and Manufacture,2012,52(1):50-58.