• CN:11-2187/TH
  • ISSN:0577-6686

›› 2008, Vol. 44 ›› Issue (12): 112-117.

• 论文 • 上一篇    下一篇

扫码分享

燃料电池系统空气流量振荡分析与控制

谷靖;卢兰光;徐梁飞;欧阳明高   

  1. 清华大学汽车安全与节能国家重点实验室
  • 发布日期:2008-12-15

Modeling and Control of Air System for Fuel Cell System

GU Jing;LU Languang;XU Liangfei;OUYANG Minggao   

  1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University
  • Published:2008-12-15

摘要: 针对低压燃料电池系统大负荷状态下存在的空气流量振荡问题展开研究。在分析原系统结构的基础上,采用半经验的方法对鼓风机进行精确建模,进而建立整个空气系统的动态模型,该模型考虑鼓风机寄生功率对燃料电池系统功率的影响。采用试验数据对模型进行验证,结果证明模型能精确地实现对空气系统的模拟与仿真。然后根据模型仿真以及控制系统稳定性理论对空气流量振荡的原因进行分析,其中理论分析采用原系统的简化模型。分析结果表明,原系统中采用鼓风机电流作为闭环反馈信号是空气流量振荡的根本原因。因此对空气流量的控制算法进行改进,打开电流环,并优化控制参数。试验结果证明,改进后的控制算法能有效消除空气流量的振荡,控制效果良好。

关键词: 建模, 空气系统, 控制, 燃料电池系统, 振荡

Abstract: In order to deal with the problem of instability in the air mass flow control at high load, the air system of a low-pressure fuel cell system is studied in details. Based on the analysis of the system architecture, the dynamic model of the air system is developed, in which a semi-empirical model of blower is built and the impact of parasitic power of the blower on the net power of the fuel cell system is taken into consideration. The accuracy of the model is verified by comparing the simulation results with the experimental data. Then the reason for instability is studied by using both model simulation and theoretical analysis which employs the automatic control theory based on the linearized system model. The analysis result shows that the feedback loop of the blower current is the cause of instability. Furthermore, a new control algorithm is designed. The new control algorithm opens the current loop and adapts to the optimized control parameters. The test results show that the air mass flow rate is stable and the improved system has a good performance.

Key words: Air system, Control, Fuel cell system, Modeling, Vibration

中图分类号: