[1] 冯之敬. 机械制造工程原理[M]. 北京:清华大学出版社, 2008. FENG Zhijing. Principles of mechanical manufacturing engineering[M]. Beijing:Tsinghua University Press, 2008. [2] KLOCKE F, EISENBLÄTTER G. Dry cutting[J]. CIRP Annals-Manufacturing Technology, 1997, 46(2):519-526. [3] WEINERT K, INASAKI I, SUTHERLAND J W, et al. Dry machining and minimum quantity lubrication[J]. CIRP Annals-Manufacturing Technology, 2004, 53(2):511-537. [4] 周春宏,赵汀,姚振强. 最少量润滑切削技术(MQL)-经济有效的绿色制造方法[J]. 机械设计与研究, 2005, 21(5):81-83. ZHOU Chunhong, ZHAO Ting, YAO Zhenqiang. MQL-An economical solution to sustainable manufacturing with high efficiency[J]. Machine Design and Research, 2005, 21(5):81-83. [5] SREEJITH P S, NGOI B K A. Dry machining:machining of the future[J]. Journal of Materials Processing Technology, 2000, 101(1):287-291. [6] 刘志峰,张崇高,任家隆. 干切削加工技术及应用[M]. 北京:机械工业出版社, 2005. LIU Zhifeng, ZHANG Chonggao, REN Jialong. Dry machining technology and application[M]. Beijing:China Machine Press, 2005. [7] WILLIAMS J A, TABOR D. The role of lubricants in machining[J]. Wear, 1977, 43(3):275-292. [8] GODLEVISKI V A, VOLKOV A V. The kinetics of lubricant penetration action during machining[J]. Lubrication Science, 1997(9):127-140. [9] 刘俊岩. 水蒸汽作绿色冷却润滑剂的作用机理及切削试验研究[D]. 哈尔滨:哈尔滨工业大学, 2005. LIU Junyan. Study on action mechanism and experiment with water vapor as coolants and lubricants in green cutting[D]. Harbin:Harbin Institute of Technology, 2005. [10] 严鲁涛. 低温微量润滑切削技术作用机理及试验研究[D]. 北京:北京航空航天大学, 2011. YAN Lutao. Mechanics and experimental investigation of minimum quantity lubrication with cooling air (MQL-CA) machining process[D]. Beijing:Beihang University, 2011. [11] BHOWMICK S, ALPAS A T. The role of diamond-like carbon coated drills on minimum quantity lubrication drilling of magnesium alloys[J]. Surface and Coatings Technology, 2011, 205(23):5302-5311. [12] PARK K H, KWON P Y, EWALD B. Effect of nano-enhanced lubricant in minimum quantity lubrication balling milling[J]. Journal of Tribology, 2011, 133(3):031803. [13] WAKABAYASHI T, SUDA S, INASAKI I, et al. Tribological action and cutting performance of MQL media in machining of aluminum[J]. CIRP Annals-Manufacturing Technology, 2007, 56(1):97-100. [14] WAKABAYASHI T, INASAKI I, SUDA S. Tribological action and optimal performance:Research activities regarding MQL machining fluids[J]. Machining Science and Technology, 2006, 10(1):59-85. [15] MIN S, INASAKI I, FUJIMURA S, et al. Investigation of adsorption behavior of lubricants in near-dry machining[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2005, 219(9):665-671. [16] DUCHOSAL A, LEROY R, VECELLIO L, et al. An experimental investigation on oil mist characterization used in MQL milling process[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(5-8):1003-1014. [17] ABUKHSHIM N A, MATIVENGA P T, SHEIKH M A. Heat generation and temperature prediction in metal cutting:A review and implications for high speed machining[J]. International Journal of Machine Tools and Manufacture, 2006, 46(7):782-800. [18] PARK K H, OLORTEGUI-YUME J, YOON M C, et al. A study on droplets and their distribution for minimum quantity lubrication (MQL)[J]. International Journal of Machine Tools and Manufacture, 2010, 50(9):824-833. [19] 汤羽昌,何宁,赵威,等. 基于微量润滑的两级雾化仿真与试验研究[J]. 工具技术, 2013, 47(1):3-6. TANG Yuchang, HE Ning, ZHAO Wei, et al. Simulation of two-stage atomization and experimental study on minimum quantity lubrication[J]. Tool Engineering, 2013, 47(1):3-6. [20] 刘晓丽,李亮,赵威,等. 基于微量润滑的切削油雾雾化特性测试与分析[J]. 工具技术, 2012, 45(12):16-18. LIU Xiaoli, LI Liang, ZHAO Wei, et al. Study on cutting oil mist spray characteristic based on minimum quantity lubrication[J]. Tool Engineering, 2012, 45(12):16-18. [21] 刘晓丽. 基于微量润滑的切削环境空气质量检测与分析[D]. 南京:南京航空航天大学, 2012. LIU Xiaoli. The detection and analysis of ambient air quality in the cutting process based on minimal quantity lubrication[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012. [22] ISKANDAR Y, TENDOLKAR A, ATTIA M H, et al. Flow visualization and characterization for optimized MQL machining of composites[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1):77-80. [23] INSURANCE G S A. Minimum Quantity Lubrication for Machining Operations[R]. BGI/GUV-I718E, in German, Berlin:Deutsche Gesetzliche Unfallversicherung (DGUV), 2010. [24] ATTANASIO A, GELFI M, GIARDINI C, et al. Minimal quantity lubrication in turning:Effect on tool wear[J]. Wear, 2006, 260(3):333-338. [25] KAMATA Y, OBIKAWA T. High speed MQL finish-turning of Inconel 718 with different coated tools[J]. Journal of Materials Processing Technology, 2007, 192:281-286. [26] OBIKAWA T, ASANO Y, KAMATA Y. Computer fluid dynamics analysis for efficient spraying of oil mist in finish-turning of Inconel 718[J]. International Journal of Machine Tools & Manufacture, 2009, 49(12-13):971-978. [27] OBIKAWA T, KAMATA Y, SHINOZUKA J. High-speed grooving with applying MQL[J]. International Journal of Machine Tools and Manufacture, 2006, 46(14):1854-1861. [28] TASDELEN B, WIKBLOM T, EKERED S. Studies on minimum quantity lubrication (MQL) and air cooling at drilling[J]. Journal of Materials Processing Technology, 2008, 200(1-3):339-346. [29] KYUNG H P, GI D Y, SUHAIMI M A,et al. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V[J]. Journal of Mechanical Science and Technology, 2015, 29(12):5121-5126. [30] DUCHOSAL A, SERRA R, LEROY R. Numerical study of the inner canalization geometry optimization in a milling tool used in micro quantity lubrication[J]. Mechanics & Industry, 2014, 15(5):435-442. [31] DUCHOSAL A, SERRA R, LEROY R, et al. Numerical steady state prediction of spitting effect for different internal canalization geometries used in MQL machining strategy[J]. Journal of Manufacturing Processes, 2015, 20:149-161. [32] DUCHOSAL A, SERRA R, LEROY R, et al. Numerical optimization of the minimum quantity lubrication parameters by inner canalizations and cutting conditions for milling finishing process with Taguchi method[J]. Journal of Cleaner Production, 2015, 108:65-71. [33] DUCHOSAL A, WERDA S, SERRA R, et al. Numerical modeling and experimental measurement of MQL impingement over an insert in a milling tool with inner channels[J]. International Journal of Machine Tools and Manufacture, 2015, 94:37-47. [34] DUCHOSAL A, WERDA S, SERRA R, et al. Experimental method to analyze the oil mist impingement over an insert used in MQL milling process[J]. Measurement, 2016, 86:283-292. [35] LAWAL S A, CHOUDHURY I A, NUKMAN Y. A critical assessment of lubrication techniques in machining processes:A case for minimum quantity lubrication using vegetable oil-based lubricant[J]. Journal of Cleaner Production, 2013, 41:210-221. [36] 田佳. 低温微量润滑切削环境空气质量研究[D]. 南京:南京航空航天大学, 2009. TIAN Jia. An investigation of ambient air quality in cutting process with cryogenic minimum quantity lubrication[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009. [37] MWFSAC (OSHA). Metalworking fluids safety and health best practice manual[S]. Washington DC:Occupational Safety & Health Administration, 2008. [38] 环境保护部, 国家质量监督检验检疫总局. 环境空气质量标(GB 3095-2012)[S]. 北京:中国环境科学出版社, 2012. Ministry of Environmental Protection of P.R.C., General Administration of Quality Supervision, Inspection and Quarantine of P.R.C. Ambient air quality standards (GB 3095-2012)[S]. Beijing:China Environmental Science Press, 2012. [39] 国家机械工业局. 金属切削机床油雾浓度测量方法(JB/T 9879-1999)[S]. 北京:国家机械工业局, 1999. State Bureau of Machine-Building Industry. Metal cutting machine tools-determination method of oil mist concentration (JB/T 9879-1999)[S]. Beijing:State Bureau of Machine-Building Industry, 1999. [40] 赵威,何宁,李亮,等. 微量润滑系统参数对切削环境空气质量的影响[J]. 机械工程学报, 2014, 50(13):184-189. ZHAO Wei, HE Ning,LI Liang, et al. Investigation on the influence of system parameters on ambient air[J]. Journal of Mechanical Engineering, 2014, 50(13):184-189. [41] TAWAKOLI T, HADAD M J, SADEGHI M H. Influence of oil mist parameters on minimum quantity lubrication-MQL grinding process[J]. International Journal of Machine Tools and Manufacture, 2010, 50(6):521-531. [42] LIU Z Q, CAI X J, CHEN M, et al. Investigation of cutting force and temperature of end-milling Ti-6Al-4V with different minimum quantity lubrication (MQL) parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2011, 225(8):1273-1279. [43] PEI H J, SHEN C G, ZHENG W J, et al. CFD analysis and experimental investigation of jet orientation in MQL machining[C]//Advanced Materials Research. Trans Tech Publications, 2010, 135:462-466. [44] ZHENG W J, PEI H J, WANG G C, et al. Effect of flow field on cutting fluid penetration during minimum quantity lubrication (MQL) machining[C]//Advanced Materials Research. Trans Tech Publications, 2011, 188:61-66. [45] SADEGHI M H, HADDAD M J, TAWAKOLI T, et al. Minimal quantity lubrication-MQL in grinding of Ti-6Al-4V titanium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2009, 44(5-6):487-500. [46] TAWAKOLI T, HADAD M, SADEGHI M H, et al. Minimum quantity lubrication in grinding:Effects of abrasive and coolant-lubricant types[J]. Journal of Cleaner Production, 2011, 19(17):2088-2099. [47] RAHIM E A, SASAHARA H. An analysis of surface integrity when drilling inconel 718 using palm oil and synthetic ester under MQL condition[J]. Machining Science and Technology, 2011, 15(1):76-90. [48] RAHIM E A, SASAHARA H. A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys[J]. Tribology International, 2011, 44(3):309-317. [49] WAKABAYASHI T, ATSUTA T, TSUKUDA A, et al. Cutting performance of oxygen-including compounds in MQL machining of aluminum[C]//Key Engineering Materials. Trans Tech Publications, 2012, 523:967-972. [50] SUDA S, YOKOTA H, INASAKI I, et al. A synthetic ester as an optimal cutting fluid for minimal quantity lubrication machining[J]. CIRP Annals-Manufacturing Technology, 2002, 51(1):95-98. [51] TAI B L, DASCH J M, SHIH A J. Evaluation and comparison of lubricant properties in minimum quantity lubrication machining[J]. Machining Science and Technology, 2011, 15(4):376-391. |