[1] SARIHAN V,KLOPFENSTEIN A. Microelectronics packaging handbook. part II. semiconductor packaging[M]. Toronto:Chapman & Hall,1996. [2] REN F,NAH J W,TU K N,et al. Electromigration induced ductile-to-brittle transition in lead-free solder joints[J]. Applied Physics Letters,2006,89(14):141914. [3] WANG X J,ZENG Q L,ZHU Q S,et al. Effects of current stressing on shear properties of Sn-3.8Ag-0.7Cu solder joints[J]. Journal of Materials Science & Technology,2010,26(8):737-742. [4] 尹立孟,张新平. 电迁移致无铅钎料微互连焊点的脆性蠕变断裂行为[J]. 电子学报,2009,37(2):253-257. YIN Limeng,ZHANG Xinping. Electromigration induced brittle creep fracture behavior of lead-free solder micro-interconnections[J]. Acta Electronica Sinica,2009,37(2):253-257. [5] KIM Y,NAGAO S,SUGAHARA T,et al. Effect of electromigration on mechanical shock behavior in solder joints of surface mounted chip components[J]. Japanese Journal of Applied Physics,2014,53(S4):04EB02. [6] LIU H Y,ZHU Q X,ZHANG L,et al. Enhanced stress relaxation of Sn-3.8Ag-0.7Cu solder by electrical current[J]. Journal of Materials Research,2010,25(6):1172-1178. [7] LIU H Y,ZHU Q X,WANG G Z,et al. Stress relaxation behavior of Cu/Sn/Cu micro-connect after electrical current[J]. Materials Science and Engineering:A,2011,528(3):1467-1471. [8] CHEN R,YANG F Q. Impression creep of a Sn60Pb40 alloy:The effect of electric current[J]. Journal of Physics D:Applied Physics,2008,41(15):155406. [9] CHEN R,YANG F Q. Effect of DC current on the creep deformation of tin[J]. Journal of Electronic Materials,2010,39(12):2611-2617. [10] ZHAO G F,LIU M,YANG F Q. The effect of an electric current on the nanoindentation behavior of tin[J]. Acta Materialia,2012,60(9):3773-3782. [11] ZHAO G F,LIU M,YANG F Q. Effect of DC current on tensile creep of pure tin[J]. Materials Science and Engineering:A,2014,591:97-104. [12] XUAN F Z,SHAO S S,CHEN Q Q. Synthesis creep behavior of Sn63Pb37 under the applied stress and electric current[J]. Microelectronics Reliability,2011,51(12):2336-2340. [13] SU F,MAO R H,WANG X Y,et al. Creep behaviour of Sn-3.8Ag-0.7Cu under the effect of electromigration:Experiments and modelling[J]. Microelectronics Reliability,2011,51(5):1020-1024. [14] SHAO S S,YANG F Q,XUAN F Z. Effect of electromigration on diffusional creep in polycrystalline materials[J]. International Journal of Applied Electromagnetics and Mechanics,2012,40(2):165-171. [15] ZUO Y,MA L M,GUO F,et al. Effects of electromigration on the creep and thermal fatigue behavior of Sn58Bi solder joints[J]. Journal of Electronic Materials,2014,43(12):4395-4405. [16] MA L M,ZUO Y,GUO F,et al. Effects of current densities on creep behaviors of Sn-3.0Ag-0.5Cu solder joint[J]. Journal of Materials Research,2014,29(22):2738-2747. [17] KINNEY C,MORRIS J J W,LEE T K,et al. The influence of an imposed current on the creep of Sn-Ag-Cu solder[J]. Journal of Electronic Materials,2009,38(2):221-226. [18] KINNEY C,LEE T K,LIU K C,et al. The interaction between an imposed current and the creep of idealized Sn-Ag-Cu solder interconnects[J]. Journal of Electronic Materials,2009,38(12):2585-2591. [19] 尹立孟,杨艳,刘亮岐,等. 电子封装微互连焊点力学行为的尺寸效应[J]. 金属学报,2009,45(4):422-427. YIN Limeng,YANG Yan,LIU Liangqi,et al. Size effect of mechanical behavior of miniature solder joint interconnections in electronic packaging[J]. Acta Metallurgica Sinica,2009,45 (4):422-427. [20] 尹立孟,张新平. 无铅微互连焊点力学行为尺寸效应的试验及数值模拟[J]. 机械工程学报,2010,46(2):55-60. YIN Limeng,ZHANG Xinping. Experiment and numerical simulation of size effects of mechanical behaviors of lead-free micro-interconnection solder joints[J]. Journal of Mechanical Engineering,2010,46(2):55-60. [21] 黎滨,杨艳,尹立孟,等. 无铅微焊点界面断裂行为的尺寸效应[J]. 机械工程学报,2010,46(18):77-84. LI Bin,YANG Yan,YIN Limeng,et al. Size effects on interface fracture behavior of lead-free micro-joints[J]. Journal of Mechanical Engineering,2010,46(18):77-84. [22] 秦红波,李望云,李勋平,等. BGA结构无铅微焊点的低周疲劳行为研究[J]. 机械工程学报,2014,50(20):54-62. QIN Hongbo,LI Wangyun,LI Xunping,et al. Research on low cycle fatigue behavior of BGA structure lead-free solder joints[J]. Journal of Mechanical Engineering,2014,50(20):54-62. [23] PHARR M,ZHAO K J,SUO Z G,et al. Concurrent electromigration and creep in lead-free solder[J]. Journal of Applied Physics,2011,110(8):083716. [24] LI Z H,DONG Y,LI S,et al. Electromigration-induced coble creep in polycrystalline materials[J]. Applied Physics Letters,2007,91(19):191902-191904. [25] LEE T Y,TU K N,KUO S M,et al. Electromigration of eutectic SnPb solder interconnects for flip chip technology[J]. Journal of Applied Physics,2001,89(6):3189-3194. [26] ANDRAWES J S,KRONENBERGER T J,PERKINS T A,et al. Effects of DC current on the mechanical behavior of AlMgSiCu[J]. Materials and Manufacturing Processes,2007,22(1):91-101. [27] PEI C H,FAN Q B,CAI H N,et al. High temperature deformation behavior of the TC6 titanium alloy under the uniform DC electric field[J]. Journal of Alloys and Compounds,2010,489(2):401-407. [28] DENG X,KOOPMAN M,CHAWLA N,et al. Young’s modulus of (Cu,Ag)-Sn intermetallics measured by nanoindentation[J]. Materials Science and Engineering:A,2004,364(1):240-243. [29] CHAO B H L,ZHANG X F,CHAE S H,et al. Recent advances on kinetic analysis of electromigration enhanced intermetallic growth and damage formation in Pb-free solder joints[J]. Microelectronics Reliability,2009,49(3):253-263. [30] SPRECHER A F,MANNAN S L,CONRAD H. On the mechanisms for the electroplastic effect in metals[J]. Acta Metallurgica,1986,34(7):1145-1162. [31] DIETER G E,BACON D. Mechanical metallurgy[M]. New York:McGraw-Hill,1986. [32] 刘志义,刘冰,邓小铁,等. 脉冲电流对2091Al-Li合金超塑性变形机理的影响[J]. 金属学报,2000,36(9):944-951. LIU Zhiyi,LIU Bing,DENG Xiaotie,et al. Effect of current pulse on mechanism of superplastic deformation of 2091 Al-Li alloy[J]. Acta Metallurgica Sinica,2000,36(9):944-951. [33] PEI C H,LI Z X,FAN Q B,et al. Quasi-static tensile mechanical property of TC6 titanium alloy under low direct current[J]. Materials Research Innovations,2014,18(S4):198-201. [34] SUO Z G . Electromigration-induced dislocation climb and multiplication in conducting lines[J]. Acta Metallurgica et Materialia,1994,42(11):3581-3588. [35] NIU R M,ZHANG J,WANG Z J,et al. Mechanical strength lowering in submicron Cu thin films by moderate DC current[J]. Applied Physics A,2009,97(2):369-374. [36] HIRTH J P,LOTHE J. Theory of dislocations[M]. 2nd ed. New York:John Wiley & Sons,Inc.,1982. [37] MEHRER H. Diffusion in solids:Fundamentals,methods,materials,diffusion-controlled processes[M]. Berlin Heidelberg:Springer-Verlag,2007. [38] CLEMENT J J. Vacancy supersaturation model for electromigration failure under DC and pulsed DC stress[J]. Journal of Applied Physics,1992,71(9):4264-4268. [39] WANG Y W,LIN Y W,KAO C R. Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates[J]. Microelectronics Reliability,2009,49(3):248-252. [40] WU A T,GUSAK A M,TU K N,et al. Electromigration-induced grain rotation in anisotropic conducting beta tin[J]. Applied Physics Letters,2005,86(24):241902. [41] WU A T,HSIEH Y C. Direct observation and kinetic analysis of grain rotation in anisotropic tin under electromigration[J]. Applied Physics Letters,2008,92(12):121921. [42] COOK B A,ANDERSON I E,HARRINGA J L,et al. Isothermal aging of near-eutectic Sn-Ag-Cu solder alloys and its effect on electrical resistivity[J]. Journal of Electronic Materials,2003,32(12):1384-1391. |