[1] QIAO P Z,Yang M J,Bobaru F. Impact mechanics and high-energy absorbing materials:Review[J]. Journal of Aerospace Engineering,2008,21(4):235-248. [2] MAZZON E,HABAS-ULLOA A,HABAS J P. Lightweight rigid foams from highly reactive epoxy resins derived from vegetable oil for automotive applications[J]. European Polymer Journal,2015,68:546-557. [3] MARHOON I I. Study the effect of polypropylene fibers in some mechanical and physical properties of rigid polyurethane foam composites[J]. Journal of Engineering and Sustainable Development,2016,20(4):70-86. [4] GIBSON L J,ASHBY M F. Cellular solids:structure and properties[M]. New York:Cambridge University Press,1999. [5] CHEN Y H,ZHUANG W M,WANG S W,et al. Investigation of FE model size definition for surface coating application[J]. Chinese Journal of Mechanical Engineering,2012,25(5):860-867. [6] 兰凤崇,曾繁波,周云郊,等. 闭孔泡沫铝力学特性及其在汽车碰撞吸能中的应用研究进展[J]. 机械工程学报,2014,50(22):97-112. LAN Fengchong,ZENG Fanbo,ZHOU Yunjiao,et al. Progress on research of mechanical properties of closed-cell aluminum foams and its applications in automobile crashworthiness[J]. Journal of Mechanical Engineering,2014,50(22):97-112. [7] TRIANTAFILLOU T C,ZHANG J,SHERCLIFF T L,et al. Failure surfaces for cellular materials under multiaxial loads Ⅱ:Comparison of models with experiment[J]. International Journal of Mechanical Science,1989,31(9):665-678. [8] HUBER A T,GIBSON L J. Anisotropy of foams[J]. Journal of Material Science,1988,23(8):3031-3040. [9] SAINT-MICHEL F,CHAZEAU L,CAVAILLE' J Y,et al. Mechanical properties of high density polyurethane foams:I. effect of the density[J]. Composites Science and Technology,2006,66(15):2700-2708. [10] ZENKERT D,BURMAN M. Tension,compression and shear fatigue of a closed cell polymer foam[J]. Composites Science and Technology,2009,69(6):785-792. [11] PERONI L,AVALLE M,PERONI M. The mechanical behavior of polyurethane foam:multiaxial and dynamic behavior[J]. International Journal of Materials Engineering Innovation,2009,1(2):154-173. [12] DAI X Y,SABUWALA T,GIOIA G. Experiments on elastic polyether polyurethane foams under multiaxial loading:Mechanical response and strain fields[J]. Journal of Applied Mechanics,Transactions ASME,2011,78(3):2388-2399. [13] OZTURK U E,ANLAS G. Hydrostatic compression of anisotropic low density polymeric foams under multiple loadings and unloadings[J]. Polymer Testing,2011,30(7):737-742. [14] VIOT P. Hydrostatic compression on polypropylene foam[J]. International Journal of Impact Engineering,2009,36(7):975-989. [15] MASSO M Y,MILLS N J. Rapid hydrostatic compression of low-density polymeric foams[J]. Polymer Testing,2004,23(3):313-322. [16] PETTARIN V,FASCE L A,FRONTINI P M. Assessment of multiaxial mechanical response of rigid polyurethane foams[J]. Journal of Materials Engineering and Performance,2014,23(2):477-485. [17] GDOUTOS E E,DANIEL I M,WANG K A. Failure of cellular foams under multiaxial loading[J]. Composites Part A:applied science and manufacturing,2002,33(2):163-176. [18] WANG D A,PAN J. A non-quadratic yield function for polymeric foams[J]. International Journal of Plasticity,2006,22(22):434-458. [19] WANG X G,GAO Z L,QIU B X,et al. Multi-axial fatigue of 2024-T4 aluminum alloy[J]. Chinese Journal of Mechanical Engineering,2011,24(2):195-201. [20] SRIVASTAVA V,SRIVASTAVA R. On the polymeric foams:modeling and properties[J]. Journal of Materials Science,2014,49(7):2681-2692. [21] AYYAGARI R S,VURAL M. Multiaxial yield surface of transversely isotropic foams:Part I-Modeling[J]. Journal of The Mechanics and Physics of Solids,2015,76:224-236. [22] DESHPANDE V S,FLECK N A. Multi-axial yield behaviour of polymer foams[J]. Acta Materialia,2001,49(10):1859-1866. [23] JIN H,LU W Y,SCHEFFEL S,et al. Full-field characterization of mechanical behavior of polyurethane foams[J]. International Journal of Solids and Structure,2007,44(21):6930-6944. [24] ALVAREZ P,MENDIZABAL A,PETITE M M,et al. Finite element modelling of compressive mechanical behaviour of high and low density polymeric foams[J]. Materialwissenschaft Und Werkstofftechnik,2009,40(3):126-132. [25] FAHLBUSCH N C,BECKER W,KOLUPAEV V A ,et al. Nonlinear material behaviour and failure of closed-cell polymer foams[J]. Acta Mechanica,2016,227(11):3113-3121. [26] KIM Y,KANG S. Development of experimental method to characterize pressure-dependent yield criteria for polymeric foams[J]. Polymer Testing,2003,22(2):197-202. [27] REI J M L,CHAVES F L,MATTOS H S. Tensile behaviour of glass fibre reinforced polyurethane at different strain rates[J]. Materials & Design,2013,49:192-196. [28] 彭艳,李浩然. 考虑附加强化效应的多轴高周疲劳损伤演化模型[J]. 机械工程学报,2015,51(16):135-142. PENG Yan,LI Haoran. Multiaxial high cycle fatigue damage evolution model including additional hardening effect[J]. Journal of Mechanical Engineering,2015,51(16):135-142. [29] WEIBENBORN O,EBERT C,GUDE M. Modelling of the strain rate dependent deformation behaviour of rigid polyurethane foams[J]. Polymer Testing,2016,54:145-149. [30] 陈诚. 车用硬质聚氨酯泡沫力学实验及有限元仿真[D]. 广州:华南理工大学,2015. CHEN Cheng. Mechanical experiments and finite element simulation of rigid polyurethane foam in the car[D]. Guangzhou:South China University of Technology,2015. [31] OZTURK U E,ANLAS G. Energy absorption calculations in multiple compressive loading of polymeric foams[J]. Materials and Design,2009,30(1):15-22. [32] DESHPANDE V S,FLECK N A. Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics and Physics of Solids,2000,48(6):1253-1283. [33] HANSSEN A G,HOPPERSTAD O S,LANGSETH M,et al. Validation of constitutive models applicable to aluminium foams[J]. International Journal of Mechanical Sciences,2002,44(2):359-406. |